K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 3 2018

Lời giải:

Đường tròn

Kéo dài $OA$ cắt $(O)$ tại $D$

Do $AD$ là đường kính nên $ABD$ vuông tại $B$

\(\Rightarrow \sin \widehat{BDA}=\frac{BA}{AD}=\frac{c}{2R}\)

Mà \(\widehat{BDA}=\widehat{BCA}=\widehat{C}\) (cùng chắn cung AB)

Do đó \(\sin C=\sin \widehat{BCA}=\frac{c}{2R}\Leftrightarrow \frac{c}{\sin C}=2R\)

Hoàn toàn tương tự, kẻ đường kính từ B,C ta thu được:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\) (đpcm)

9 tháng 2 2019

Rối hình đừng hỏi, vì mình vẽ hình ra nháp nó đã rối sẵn rồi :)Violympic toán 9

Kẻ đường kính AD, BE, CF

\(\Delta ABD\) có: \(\hat{ABD}=90^o\)(góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow\)\(\sin\hat{ADB}\)\(=\dfrac{AB}{AD}\)(tỉ số lượng giác) mà \(\hat{ACB}=\hat{ADB}\)(cùng chắn \(\stackrel\frown{AB}\)) \(\Rightarrow\)\(\sin\hat{ACB}\)\(=\dfrac{AB}{AD}\)\(\Rightarrow2R=\)\(AB\over\sin\hat{ACB}\)

Chứng minh tương tự với \(\Delta BCE,\Delta CAF\)\(\Rightarrow2R=\)\(BC\over\sin\hat{BAC}\)\(=\)\(AC\over\sin\hat{ABC}\)

Từ 2 điều trên ta được điều phải chứng minh

b, Ta có: \(\hat{ACD}=90^o\)(góc nội tiếp chắn nửa đường tròn)\(\Rightarrow\left\{{}\begin{matrix}AC\perp CD\\AC\perp BK\left(gt\right)\end{matrix}\right.\Rightarrow\)BK//CD\(\Leftrightarrow\)BH//CD

Chứng minh tương tự ta có: CH // BD (cùng vuông góc với AB)

Tứ giác BHCD có: BH // CD, CH // BD (cmt) nên là hình bình hành có 2 đường chéo HD và BC cắt nhau tại trung điểm I của BC nên H, I, D thẳng hàng

9 tháng 2 2019

À lộn, \(\Delta BCE,\Delta BCF\) nhé

17 tháng 8 2018

đây nha bn : https://hoc24.vn/hoi-dap/question/639032.html

17 tháng 8 2018

bạn ơi mình nhấn không được

7 tháng 11 2017

bạn áp dụng hệ thức lượng trong tam giác vuông nha

7 tháng 11 2017

Phải là áp dụng tỉ số lượng giác của góc nhọn chứ bạn?

23 tháng 7 2017

A B C c H b a h

kẻ AH vuông góc với BC 

đặt AH = h . xét hai tam giác vuông AHB và AHC , ta có :

sin B = \(\frac{AH}{AB}\),   sin C = \(\frac{AH}{AC}\)

do đó \(\frac{sinB}{sinC}=\frac{AH}{AB}\cdot\frac{AC}{AH}=\frac{h}{c}\cdot\frac{b}{h}=\frac{b}{c}\)

suy ra \(\frac{b}{sinB}=\frac{c}{sinC}\)

tương tự   \(\frac{a}{sinA}=\frac{b}{sinB}\)

vậy suy ra dpcm

23 tháng 7 2017

cái đường thẳng cắt tam giác đó mk không bt nó thừ đâu tới, bạn bỏ cái đấy đi nhá

20 tháng 11 2017

Bạn tự vẽ hình nhé

a,Kẻ BK vuông góc với AC, đặt BK = h

tam giác ABK có K vuông => sin A = h/c => a/sin A = ac/h (1)

tam giác BKC có K vuông => sin C = h/a => c/sin C = ac/h (2)

Từ (1) và (2) => a/sin A = c/sin C

CMTT có b/sinB = c/sin C

=> dpcm

b, có SABC = (h.b)/2

mà h = a.sinC \(\Rightarrow S_{ABC}=\dfrac{a.sinC.b}{2}\) = \(\dfrac{1}{2}a.b.sinC\)

CMTT có \(S_{ABC}=\dfrac{1}{2}a.c.sinB=\dfrac{1}{2}b.c.sinA\)

=> đpcm

9 tháng 6 2018

a, ( Định lý Sin)

b, Áp dụng T/C tỉ lệ thức

Xảy ra \(\Leftrightarrow a=b+c\)

17 tháng 7 2019
https://i.imgur.com/7UYQkx1.jpg
9 tháng 5 2020

A H B C

kẻ CH vuông góc AB 

Ta có : \(\sin A=\frac{CH}{AC};\sin B=\frac{CH}{BC}\)

do đó : \(\frac{\sin A}{\sin B}=\frac{BC}{AC}=\frac{a}{b}\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\)( 1 )

Tương tự : \(\frac{b}{\sin B}=\frac{c}{\sin C}\) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)