K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có BH, CH lần lượt là hình chiếu của đường xiên AB, AC trên đường thẳng BC và AB < AC (gt).

=> BH < CH (quan hệ giữa đường xiên và hình chiếu)

Mặt khác BH, CH lần lượt là hình chiếu của đường xiên BM, CM trên đường thẳng BC và BH < CH.

=> BM < CM (quan hệ giữa hình chiếu và đường xiên).

b) (widehat {DMH} > widehat {BHM} = 90^circ (widehat {DMH}) là góc ngoài của tam giác BMH)

∆DMH có (widehat {DMH}) tù =>(widehat {DMH}) là góc lớn nhất trong ba góc

=> DH là cạnh lớn nhất trong ba cạnh (quan hệ giữa góc và cạnh trong một tam giác)

Vậy DM < DH.

a: Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

Xét ΔMBC có HB<HC

mà HB là hình chiếu của MB trên BC

va HC là hình chiếu của MC trên BC

nên MB<MC

b: Ta có: ΔMHB vuông tại H

nên \(\widehat{DMH}>90^0\)

=>DH>DM

a: Vì AB<AC

nên BH<CH

=>MB<MC

b: góc MHB=90 độ

=>góc BMH<90 độ

=>góc DMH>90 độ

=>DH>DM

a: Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

Xét ΔMBC có HB<HC

mà HB là hình chiếu cua MB trên BC

và HC là hình chiếu của MC trên BC

nên MB<MC

b: Ta có: ΔMHB vuông tại H

nên \(\widehat{DMH}>90^0\)

=>DM<DH