K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

3 tháng 3 2019

a)cm  tam giác AFC  đồng dạng  tam giác AEB(gg) 

=> tam giác AFE đồng dạng ACB(cgc) . từ đó suy ra đpcm

b) tam giác BDH đồng dạng tam giác BEC (gg) 

=> BH/BC =BD/BE hay BH .BE =BD.BC (1)

                                   t^2 CH.CF=DC.BC (2)

lấy (1)+(2) theo vế suy ra đpcm

c)tam giác AFE đd tam giác ACB ( câu a) => góc AEF = góc C 

t^2 tam giác DEC đd tam giác ABC => góc DEC= góc C

Do đó góc AEF= góc DEC 

mà góc AEF+góc FEB=90 ; góc DEC+BED =90 

 => góc FEB= góc BED 

 suy ra đpcm ................... (x-x)

26 tháng 3 2023

a) xét tam giác ABD và tam giác AHF có 

góc BAD chung

Góc AFH = góc ADB (=90 độ)

=> tam giác ABD đồng dạng vs tam giác AHF (g.g)

=> AB/AD = AH/AF

=> AF.AD = AH.AD

b) xét tam giác AFC và tam giác AEB có

Góc A chung

Góc AFC = góc AEB (=90 độ)

=> tam giác AFC đồng vs tam giác AEB (g.g)

=> AF/AC = AE/AB

=> AF.AB= AE.AC

a: Xét ΔABD vuông tại  D và ΔAHF vuông tại F có

góc FAH chung

=>ΔABD đồng dạng với ΔAHF

=>AB/AH=AD/AF

=>AB*AF=AH*AD

b: Xet ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC

c:góc FEC=góc DAC

góc DFC=góc EBC

mà góc DAC=góc EBC

nên góc FEC=goc DFC

=>FC là phân giác của góc EFD

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

15 tháng 4 2021

Nhờ anh có thể bày cho em câu d đc không ạ.

11 tháng 3 2019

A B C E F H I

Giải

a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:

\(\widehat{BHF}=\widehat{CHE}\) (vì đối đỉnh)

\(\widehat{BFH}=\widehat{CEH}=90^o\)

=> \(\Delta BHF\)  s  \(\Delta CHE\) (g - g)

b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:

\(\widehat{A}\) là góc chung

\(\widehat{AEB}=\widehat{AFC}=90^o\)

=> \(\Delta ABE\)  s  \(\Delta ACF\) (g - g)

=> \(\frac{AB}{AC}=\frac{AE}{AF}\)

=> AF . AB = AE . AC

c) Xét \(\Delta AEF\) và \(\Delta ABC\) có:

\(\widehat{A}\) là góc chung

\(\frac{AE}{AB}=\frac{AF}{AC}\) (vì \(\Delta ABE\) s \(\Delta ACF\)

=> \(\Delta AEF\)s \(\Delta ABC\) (c - g - c)

d) Câu d mình không nghĩ ra. Bạn tự làm nha, chắc là xét tam giác đồng dạng rồi suy ra hai góc bằng nhau và sẽ suy ra đường phân giác đó.

18 tháng 6 2020

A B C F E K H

a) Xét tam giác AFC và tam giác AEB có: 

^A chung 

^F vuông góc ^E

Vậy: tam giác AFC đồng dạng tam giác AEB (g.g)

vì tam giác AFC đồng dạng tam giác AEB (cmt) nên: 

=> AF/AC = AE/AB 

=> AE.AC = AF.AB (đpcm)

b) từ H kẻ HK vuông góc BC

+) xét tam giác BKH và tam giác BEC có: 

^HBC chung

^BKH = ^BEC (= 90 độ)

vậy: tam giác BKH đồng dạng tam giác BEC (g.g)

=> BK/BH = BE/BC

=> BH.BE = BK.BC (1)

+) xét tam giác CKH và tam giác CFB: 

^BHC chung

^CKH = ^CFB (= 90 độ)

vậy: tam giác CKH đồng dạng tam giác CFB 

=> CK/CH = CF/CB

=> CH.CF = BC.CK (2)

Từ (1) và (2) ta có: 

BH.BE + CH.CF = BK.BC + CK.BC

                           = BC.(BK + CK)

                           = BC.BC

                           = BC^2 

=> BH.BE + CH.CF = BC^2 (đcpm)

18 tháng 3 2020

a, Xét \(\Delta ACF\) và \(\Delta ABE\) có:

\(\widehat{AFC}=\widehat{AEB}=90^0\)

\(\widehat{BAC}\) là góc chung

\(\Rightarrow\Delta ACF~\Delta ABE\left(g.g\right)\)

\(\Rightarrow\frac{AC}{AB}=\frac{AF}{AE}\)

\(\Rightarrow AC.AE=AB.AF\)

Xét \(\Delta AEF\) và \(\Delta ABC\) có:

\(\widehat{CAB}\) là góc chung

\(\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)

b, Xét \(\Delta BDH\) và \(\Delta BEC\) có:

\(\widehat{EBC}\) là góc chung

\(\widehat{BEC}=\widehat{BDH}=90^0\)

\(\Rightarrow\Delta BDH~\Delta BEC\left(g.g\right)\)

\(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}\)

\(\Rightarrow BE.BH=BC.BD\left(1\right)\)

Tương tự như trên ta được: \(\Delta CDH~\Delta CFB\left(g.g\right)\)

\(\Rightarrow\frac{CH}{CB}=\frac{CD}{CF}\)

\(\Rightarrow CF.CH=CD.CB\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BE.BH+CH.CF=BD.BC+BC.CD=BC\left(BD.CD\right)=BC^2\)

 \(\Rightarrow BH.BE+CH.CF=BC^2\)

19 tháng 3 2020

d,EI _|_ AB ; CE _|_ AB  => EI // CE => AI/IF = AE/EC (đl)

EK _|_ AD; CD _|_ AD => EK // CD => AK/KD = AE/EC (đl)

=> AI/IF = AK/KD; xét tam giac AFD

=> IK // FD (1)

ER _|_ BC; AD _|_ BC => ER // AD => CR/RD = CE/EA (đl)

EQ _|_ CF; AF _|_ CF => AH // AF => CH/FH =  CE/AE (đl)

=> CR/RD = CH/FH; xét tam giác CFD

=> HR // FD       (2)

EK _|_ AD; AD _|_ BD => EK // BD => KH/HD = EH/HB (đl)

EH _|_ CF; CF _|_ BF => EH // FB => EH/HB = QH/HF (đl)

=> KH/HD = QH/HF

=> KH // ED (3)

(1)(2)(3) => I;K;H;R thẳng hàng (tiên đề Ơclit)