Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét tam giác EHB và tam giác DHC có :
\(\widehat{EHB}=\widehat{DHC}\left(đđ\right)\)
\(\widehat{HEB}=\widehat{HDC}\)
\(\Rightarrow\) tam giác EHB đồng dạng với tam giác DHC (g-g)
b)
Do tam giác EHB đồng dạng với tam giác DHC
\(\Rightarrow\frac{EH}{DH}=\frac{HB}{HC}\)
Xét tam giác HED và tam giác HBC có :
\(\frac{EH}{DH}=\frac{HB}{HC}\)
\(\widehat{EHD}=\widehat{BHC}\)
\(\Rightarrow\) tam giác HED đồng dạng với tam giác HBC (c-g-c)
a) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB∼ΔDHC(góc nhọn)
b) Ta có: ΔEHB∼ΔDHC(cmt)
\(\Leftrightarrow\frac{HE}{HD}=\frac{HB}{HC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(\frac{HE}{HB}=\frac{HD}{HC}\)
Xét ΔHED và ΔHBC có
\(\frac{HE}{HB}=\frac{HD}{HC}\)(cmt)
\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔHED∼ΔHBC(c-g-c)
c) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{DAB}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
\(\Leftrightarrow\frac{AD}{AE}=\frac{AB}{AC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(\frac{AD}{AB}=\frac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\frac{AD}{AB}=\frac{AE}{AC}\)(cmt)
\(\widehat{DAE}\) chung
Do đó: ΔADE∼ΔABC(c-g-c)
d) Gọi K là giao điểm của AH và BC
Xét ΔABC có
BD là đường cao ứng với cạnh AC(gt)
CE là đường cao ứng với cạnh AB(gt)
BD\(\cap\)CE={H}
Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
⇔AH⊥BC
⇔AK⊥BC(AH\(\cap\)BC={K})
Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
\(\widehat{DBC}\) chung
Do đó: ΔBKH∼ΔBDC(góc nhọn)
\(\Leftrightarrow\frac{BK}{BD}=\frac{BH}{BC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(BK\cdot BC=BH\cdot BD\)
Xét ΔCKH vuông tại K và ΔCEB vuông tại E có
\(\widehat{ECB}\) chung
Do đó: ΔCKH∼ΔCEB(g-g)
\(\Leftrightarrow\frac{CK}{CE}=\frac{CH}{CB}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(CK\cdot CB=CE\cdot CH\)
Ta có: \(BD\cdot BH+CE\cdot CH=BK\cdot BC+CK\cdot BC\)
\(=BC\cdot\left(BK+CK\right)=BC\cdot BC=BC^2\)(đpcm)
Hình tự vẽ nha:))
a) Xét ΔEHB và ΔDHC có:
∠BEH=∠CDH=90o
∠EHB=∠DHC(đối đỉnh)
Do đó, ΔEHB∼ΔDHC (gg).
b) Xét ΔHED và HBC có:
\(\frac{HE}{HB}=\frac{HD}{HC}\)(ΔEHB∼ΔDHC)
∠DHE=∠BHC (đđ)
Do đó,ΔHED∼ΔHBC(cgc)
c) Xét ΔADB và ΔAEC có:
∠A chung
∠ADB=∠AEC=90o
Do đó, ΔADB∼ΔAEC(gg)
Xét ΔAED và ΔABC có:
∠A chung
\(\frac{AD}{AB}=\frac{AE}{AC}\)(ΔADB∼ΔAEC)
Do đó, ΔAED∼ΔABC(cgc)
d) Vẽ HK⊥BC(K∈BC)
ΔBHK∼ΔBDC(gg)⇒\(\frac{BK}{BD}=\frac{BH}{BC}\)⇔BK.BC=BH.BD
ΔCHK∼ΔCBE(gg)⇒\(\frac{CK}{CE}=\frac{CH}{CB}\)⇔CK.BC=CE.CH
⇒BC(BK+CK)=BH.BD+CE.CH
⇔BC2=BH.BD+CE.CH (đpcm)
bạn tự làm câu a,b,c nhá.
d,Xét tam giác ABD và tam giác ACE có:
Chung góc A
góc ADB=góc AEC(=90 độ)
suy ra tam giác ABC đồng dạng tam giác ACE(g.g)
suy ra
AB/AC=AD/AE(đ/n 2 tam giác đồng dạng)
suy ra AB.AE=AC.AD(dieu phai cm)
e.Kẻ AH vuông góc với BC tại I
Xét BIH và BCD có:(mk viết tắt Tam giác nha)
Chung góc B
góc I=góc D(=90 độ)
suy ra BHI đồng dạng BCD(g.g)
suy ra HB/BC=BI/BD(đ/n 2 tam giác đồng dạng)
suy ra BH.BD=BC.BI (1)
tương tự xét CHI đồng dạng CBE(chung goc C;goc I=gocE=90 độ)
suy ra CH.CE=BC.IC (2)
từ (1) và (2) suy raBH.BD+CH.CE=BC.BI+BC.IC
=BC.(BI+IC)
=BC.BC
=BC2
Vậy BH.BD+CH.CE=BC2.
a) Xét \(\Delta ADB\) và \(\Delta AEC\) co:
\(\widehat{ADB}=\widehat{AEC}=90^0\)
\(\widehat{A}\) CHUNG
Suy ra: \(\Delta ADB~\Delta AEC\)
b) Xét \(\Delta EHB\) và \(\Delta DHC\) có:
\(\widehat{HEB}=\widehat{HDC}=90^0\)
\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
suy ra: \(\Delta EHB~\Delta DHC\)
\(\Rightarrow\)\(\frac{EH}{DH}=\frac{HB}{HC}\)
\(\Rightarrow\)\(HB.DH=HC.HE\)
B C A E D F H
Bài làm:
a) Δ EHB ~ Δ DHC (g.g) vì:
+ \(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
+ \(\widehat{BEH}=\widehat{CDH}=90^0\)
=> đpcm
b) Theo phần a, 2 tam giác đồng dạng
=> \(\frac{HE}{HB}=\frac{HD}{HC}\)
Δ HED ~ Δ HBC (c.g.c) vì:
+ \(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)
+ \(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
=> đpcm
c) Δ ABD ~ Δ ACE (g.g) vì:
+ \(\widehat{ADB}=\widehat{AEC}=90^0\)
+ \(\widehat{A}\) chung
=> \(\frac{AD}{AE}=\frac{AB}{AC}\)
Δ ADE ~ Δ ABC (c.g.c) vì:
+ \(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)
+ \(\widehat{A}\) chung
=> đpcm
d) Gọi F là giao của AH với BC
Δ BHF ~ Δ BCD (g.g) vì:
+ \(\widehat{BFH}=\widehat{BDC}=90^0\)
+ \(\widehat{B}\) chung
=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)
Tương tự ta chứng minh được:
\(CH.CE=FC.BC\left(2\right)\)
Cộng vế (1) và (2) lại ta được:
\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)
=> đpcm
Mink chứng mink từng câu nha nhưng phần dễ sẽ làm hơi tắt nên bn đọc kĩ nha
a, Xét tam giác ADB và tam giác AEC có
Góc ADB = Góc AEC ( = 90 )
Góc BAC chung
Suy ra tam giác ADB đồng dạng với tam giác AEC ( g.g )
b ,
Có tam giác ADB đồng dạng với tam giác AEC ( c.m.t )
AD/AE = AB/AC ( định nghĩa 2 tam giác đồng dạng )
hay AD/AB = AE/AC
Xét tam giác AED và tam giác ACB có
BAC chung
AD/AB = AE/AC ( c.m.t)
Suy ra tam giác AED đồng dạng với tam giác ACB ( g.g )
a: Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)
Do đó:ΔEHB\(\sim\)ΔDHC
b: Ta có: ΔEHB\(\sim\)ΔDHC
nên HE/HD=HB/HC
=>HE/HB=HD/HC
Xét ΔHED và ΔHBC có
HE/HB=HD/HC
\(\widehat{EHD}=\widehat{BHC}\)
Do đó: ΔHED\(\sim\)ΔHBC
c: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
DO đó: ΔADB\(\sim\)ΔAEC
Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc EAD chung
DO đó: ΔADE\(\sim\)ΔABC