K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2019

a,\(\Delta AFE\infty\Delta BFD\left(g.g\right)\)

b, \(\Delta CBE\infty\Delta CAD\left(g.g\right)\Rightarrow\frac{CB}{CA}=\frac{CE}{CD}\Rightarrow\frac{CB}{CE}=\frac{CA}{CD}\)

c, Tam giác CEB có CM là tia p/g của \(\widehat{ECB}\left(M\in EB\right)\left(gt\right)\Rightarrow\frac{CB}{CE}=\frac{MB}{ME}\)

\(\Delta CDA\) có CN là tia phân giác của \(\widehat{ACD}\left(gt\right)\Rightarrow\frac{CA}{CD}=\frac{AN}{ND}\)

Mà \(\frac{CB}{CE}=\frac{CA}{CD}\left(cmt\right)\Rightarrow\frac{MB}{ME}=\frac{AN}{ND}\Rightarrow AN.ME=MB.ND\)

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc C chung

=>ΔCDA đồng dạng với ΔCEB

=>CD/CE=CA/CB

=>CD/CA=CE/CB; CD*CB=CA*CE
b: Xét ΔCDE và ΔCAB có

CD/CA=CE/CB

góc C chung

=>ΔCDE đồng dạng với ΔCAB

c: góc BEC=góc BFC=90 độ

=>BFEC nội tiếp

=>góc AEF=góc ABC=góc DEC

17 tháng 4 2016

 Hướng dẫn làm:
(a) Chứng minh ΔABE∼ΔACF→AEAF=ABAC→ΔAEF∼ΔABC
(b) Chứng minh BH.BE=BD.BC và CH.CF=CD.BC, từ đó suy ra điều phải chứng minh.
(c) Chứng minh ΔBHD∼ΔADC, từ đó ta có tỉ số BDHD=ADDC↔AD.HD=BD.DC
Đặt BD=x thì DC=BC−x
Khi đó 4AD.HD=x(BC−x)=−4x2+4BC.x−BC2+BC2=−(2x−BC)2+BC2≤BC2
(d) Chứng minh AKIˆ=AEIˆ
Sau đó chứng minh ΔEIA∼ΔEQH và suy ra AEIˆ=HEQˆ=HKQˆ

Đúng nha nguyễn ngọc khánh vy

17 tháng 4 2016

(a) Chứng minh ΔABE∼ΔACF→AEAF=ABAC→ΔAEF∼ΔABC
(b) Chứng minh BH.BE=BD.BC và CH.CF=CD.BC, từ đó suy ra điều phải chứng minh.
(c) Chứng minh ΔBHD∼ΔADC, từ đó ta có tỉ số BDHD=ADDC↔AD.HD=BD.DC
Đặt BD=x thì DC=BC−x
Khi đó 4AD.HD=x(BC−x)=−4x2+4BC.x−BC2+BC2=−(2x−BC)2+BC2≤BC2
(d) Chứng minh AKIˆ=AEIˆ
Sau đó chứng minh ΔEIA∼ΔEQH và suy ra AEIˆ=HEQˆ=HKQˆ

Mình đúng nha nguyễn ngọc khánh vy