K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2020

Gọi $O$ là tâm đường tròn ngoại tiếp $\Delta ABC$.

Vẽ bán kính $OD$ đi qua $M$ thì $D$ là điểm chính giữa cung $BC$ nên $A,K,D$ thẳng hàng.

Ta có $OM=\dfrac{1}{2}AH$

Tứ giác $AOMI$ có $AI//OM,AI=OM$ nên $AOMI$ là hình bình hành $\Rightarrow OA//MI \Rightarrow \widehat{A_1}=\widehat{K_1}$

Ta lại có $\widehat{A_1}=\widehat{D}=\widehat{A_2}$ nên $\widehat{K_1}=\widehat{A_2} \Rightarrow IK=IA=IH$

Vậy $\widehat{AKH}=90^o$

A B C D I R H K J M N O

Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB

Ta có \(DH.DA=DB.DC\)(1)

Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)

Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên

\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)

\(\Rightarrow AK.HD=AD.HK\)

\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)

\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)

\(\Leftrightarrow2.AD.DH=2.DK.DJ\)

\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)

Từ (1) và (2) ta  có\(DK.DJ=DH.DA\)

=> K là trực tâm của tam giác IBC

4 tháng 11 2021

.

7 tháng 7 2020

Tự vẽ hình nhé ?!

a) \(\Delta ABE=\Delta ACD\)vì \(\hept{\begin{cases}\widehat{A}=chung\\\widehat{O}=\widehat{E}=90^0\end{cases}}\)

\(\Rightarrow\frac{AB}{AC}=\frac{AE}{AD}\Leftrightarrow AC.AE=AB.AD\)