Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BEC=1/2*180=90 độ
=>CE vuông góc AB
góc BFC=1/2*180=90 độ
=>BF vuông góc AC
góc BEC=góc BFC=90 độ
=>BEFC nội tiếp
góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có
góc A chung
=>ΔAEC đồng dạng với ΔAFB
=>AE/AF=AC/AB
=>AE*AB=AF*AC
c: góc BHC=góc BOC
góc BHC+góc BAC=180 độ
=>góc BOC+góc BAC=180 độ
=>góc BAC=60 độ
=>góc KOC=60 độ
=>OK/OC=1/2
c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO
OH vuông góc MN
=>MN là đường kính của (H)
=>HM=HN
H A B C D E O F
a) Xét tam giác AEC và tam giác ADB
có:
\(\widehat{AEC}=\widehat{ADB}=90^o\)
\(\widehat{EAC}=\widehat{DAB}\)( đối đỉnh)
=> \(\Delta AEC~\Delta ADB\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\Rightarrow AE.AB=AD.AC\)
b) Xét tam giác HCB có hai đường cao CD và BE cắt nhau tại A
=> A là trực tâm tam giác ACB
=> HA vuông BC
=> AF vuông BC
Xét tứ giác BFEH có:
\(\widehat{BFH}=\widehat{HEB}=90^o\)
=> BFEH nội tiếp
c) Ta có: \(\widehat{EOC}=2\widehat{EBC}\)( góc ở tâm có độ lớn gấp 2 lần góc nội tiếp cùng chắn một cung)
Xét tứ giác ADBF có: \(\widehat{ADB}+\widehat{AFB}=90^o+90^o=180^o\)
=> ADBF nội tiếp
=> \(\widehat{ABF}=\widehat{ADF}\)( cùng chắn cung AF) hay \(\widehat{EBC}=\widehat{CDF}\)
Mặt khác \(\widehat{EDC}=\widehat{EBC}\)( cùng chắn cung EC)
=> \(\widehat{EOC}=2.\widehat{EBC}=\widehat{CDF}+\widehat{EDC}=\widehat{EDF}\)
=> \(\widehat{FOE}+\widehat{FDE}=\widehat{FOE}+\widehat{EOC}=180^o\)( hai góc bù nhau)
=> Tứ giác DEOF nội tiếp
a: góc BFC=góc BEC=1/2*180=90 độ
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
góc AFH+góc AEH=180 độ
=>AEHF là tứ giác nội tiếp
b: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
góc FAH chung
=>ΔAFH đồng dạng với ΔADB
=>AF/AD=AH/AB
=>AF*AB=AD*AH