K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

ta có:\(\tan Q=\frac{MN}{MQ}=\frac{5}{6}\)

\(\Rightarrow Q=40^0\)

ta có N=\(90^0\)-Q=\(90^0-40^0=50^0\)

áp dụng hệ về cạnh và góc trong tam giác vuông ta có:

\(MN=NQ\times\sin Q\)

\(\approx7,779cm\)

b,áp dụng hệ về cạnh và đường cao trong tam giác vuông có:

1, MH x NQ=MN x MQ

\(\Rightarrow MH=3,85\)

2, \(NH\times NQ=MN^2\)

\(\Rightarrow NH\approx3,214cm\)

ta có:HN=NQ-HQ

\(\Rightarrow\)HQ\(\approx\)4,565cm

c, vì tứ giác MKHE có:

gocsM = gócMKA = gocsMEA=\(90^0\)

\(\Rightarrow\)tứ giác MKHE là hình chữ nhật

áp dụng hệ thức cạnh và góc trong tam giác vuông có:

1, \(EH=NH\times\sin ENH\)

\(\Rightarrow EH\approx2,067cm\)

2, \(HK=HQ\times\sin KQH\)

\(\Rightarrow HK\approx3,497cm\)

\(\Rightarrow S_{MEHK}=7,228cm^2\)

                                                                                   xong rồi k mình nha

5 tháng 9 2020

a, Xét △MQN vuông tại M có: MQ2 + MN2 = QN2  (định lý Pytago)

=> 162 + 122 = QN2  => QN2 = 400 => QN = 20 (cm)

b, Xét △MQN vuông tại M có: MH là đường cao

=> MN2 = HN . QN  (1)  ,  MQ2 = QH . QN  (2)

Lấy (1) : (2) \(\Rightarrow\frac{MN^2}{MQ^2}=\frac{HN.QN}{QH.QN}=\frac{HN}{QH}\)   \(\Rightarrow\frac{MN}{MQ}=\sqrt{\frac{HN}{QH}}\)(đpcm)

16 tháng 11 2022

a: \(IN=\dfrac{12^2}{16}=9\)

QN=16+9=25

\(MN=\sqrt{9\cdot25}=15\)

\(MQ=\sqrt{16\cdot25}=20\)

b: Vì sin Q=12/20=3/5

nên góc Q=37 độ

c: \(IO=\dfrac{12\cdot16}{20}=\dfrac{192}{20}=9.6\left(cm\right)\)

11 tháng 10 2021

Áp dụng HTL trong tam giác MNQ vuông tại Q:

\(MQ^2=QH.QN\)

\(\Rightarrow QH=\dfrac{MQ^2}{QN}=\dfrac{12^2}{20}=7,2\)

Áp dụng đ/lý Pytago:

\(QN^2=MN^2+MQ^2\)

\(\Rightarrow MN=\sqrt{QN^2-MQ^2}=\sqrt{20^2-12^2}=16\)

Áp dụng HTL:

\(MN^2=NH.QN\)

\(\Rightarrow NH=\dfrac{MN^2}{QN}=\dfrac{16^2}{20}=12,8\)

a: NF=15cm

Xét ΔMNF vuông tại M có sin MFN=MN/NF=3/5

nên góc MFN=37 độ

=>góc MNF=53 độ

b: \(MO=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cn\right)\)

\(FO=\dfrac{12^2}{15}=9.6\left(cm\right)\)

c: \(S_{EOF}=\dfrac{OF\cdot OE}{2}\)

FE=12^2/9=16cm

\(OE=\dfrac{16^2}{20}=\dfrac{256}{20}=12.8\left(cm\right)\)

\(S_{EOF}=\dfrac{12.8\cdot9.6}{2}=12.8\cdot4.8=61.44\left(cm^2\right)\)

a: NF=15cm

Xét ΔMNF vuông tại M có sin MFN=MN/NF=3/5

nên góc MFN=37 độ

=>góc MNF=53 độ

b: \(MO=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cn\right)\)

\(FO=\dfrac{12^2}{15}=9.6\left(cm\right)\)

c: \(S_{EOF}=\dfrac{OF\cdot OE}{2}\)

FE=12^2/9=16cm

\(OE=\dfrac{16^2}{20}=\dfrac{256}{20}=12.8\left(cm\right)\)

\(S_{EOF}=\dfrac{12.8\cdot9.6}{2}=12.8\cdot4.8=61.44\left(cm^2\right)\)

2 tháng 8 2018

1)

a) trong tam giac ABC vuong tai A co 

+)BC2=AB2+AC2

suy ra AC=12cm

+)AH.BC=AB.AC

suy ra AH=7,2cm

b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm

suy ra MN=7,2cm

c) goi O la giao diem cu MN va AH 

Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm

suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB 

Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC

suy ra tam giac AKB can tai K

suy ra goc B= goc BAK

Ta co goc B+ goc BAH=90 do 
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)

2 tháng 8 2018

bai 2 sai de ban oi sinx hay cosx chu ko phai sin hay cos

AA
11 tháng 5 2017

M N Q H 2 6 O

a) \(MN^2=NH.NQ=2.\left(2+6\right)=16\)

=> MN = 4 (cm). => Bán kính hình tròn tâm O là MN/2 = 2 (cm) 

=> Diện tích hình tròn tâm O là: 2.2.3,14 = ...12,56 (cm2)

b) Ta có tam giác ONH là tam giác đều (vì ON = OH = HN = 2).

Suy ra \(\widehat{NOH}=60^o\) => \(\widehat{MOH}=180^o-60^o=120^o\)

=> Diện tích quạt tròn MOH là: \(\frac{12,65}{360}.120=\frac{12,65}{3}\left(cm^2\right)\)