Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo
https://olm.vn/hoi-dap/detail/4685026342.html
Câu hỏi của Bùi Phương Thảo - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link này nhé!
mik đăng cho Hiếu làm
với lại thầy cho mik nhiều bài toán 7 cx khó nên lên đây ns mấy em làm
đỡ làm chứ
có lợi đôi bên hehehe
Câu hỏi của Bùi Phương Thảo - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link này nhé!
A B C N M H K I D E
a) Vì BI; CK cùng vuông góc với AM => BI // CK => góc MCK = góc MBI ( 2 góc so le trong)
mà có MB = MC (do M là TĐ của BC)
=> tam giác vuông MCK = MBI (cạnh huyền - góc nhọn)
=> BI = CK ( 2 canh t.ư)
+) tam giác BCK = CBI ( vì: BC chung; góc BCK = góc CBI; CK = BI)
=> BK = CI (2 cạnh t.ư)
và góc KBC = góc ICB ( 2 góc t.ư) mà 2 góc này ở vị trí SLT => BK // CI
b) Gọi E là trung điểm của MC
xét tam giác vuông MKC có: KE là trung tuyến ứng với cạnh huyền MC => EK = MC/ 2
Xét tam giác vuông MNC có: NE là trung tuyến ứng với cạnh huyền MC => NE = MC/2
Áp dụng bất đẳng thức tam giác trong tam giác KNE có: KN < EK + NE = MC/ 2 + MC/ 2 = MC
vậy KN < MC
c) +) ta luôn có: IM = MK (theo câu a) => M là trung điểm của IK
+) Nếu AI = IM mà A; I; M thẳng hàng => I là trung điểm của AM => BI là trung tuyến của tam giác BAM
mặt khác, BI vuông góc với AM
=> BI vừa là đường cao vừa là đường trung tuyến trong tam giác BAM => tam giác BAM cân tại B
=> BA = BM mà BM = MA (do AM là trung tuyến ứng với cạnh huyền BC)
=> tam giác BAM đều => góc BAM = 60o
+) ta có : MA = MD (gt) mà MA = IM + IA ; IM = MK
=> MD = MK + IA mà MD = MK + KD (do MI = MK < MA = MD => K nằm giữa M và D)
=> IA = KD
=> nếu AI = IM => AI = IM = MK = KD
vậy để AI = IM = MK = KD thì tam giác ABC là tam giác vuông có góc B = 60o
d) +) Tam giác MAC = tam giác MDB ( MA = MD ; góc AMC = góc DMB do đối đỉnh; MC = MB)
=> góc DBC = góc BCA mà 2 góc này ở vị trí SLT => BD // AC
lại có MN vuông góc với AC => MN vuông góc với BD => MN là là đường cao của tam giác BMD
+) Xét tam giác BMD có: BI ; DH ; MN là 3 đường cao => chúng đồng quy => đpcm
M P N 3 4 A C G
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)
a: Xét ΔMHL vuông tại L và ΔMKL vuông tại L có
ML chung
HL=KL
Do đó: ΔMHL=ΔMKL
b: Xét ΔMHN và ΔMKN có
MH=MK
\(\widehat{HMN}=\widehat{KMN}\)
MN chung
Do đó: ΔMHN=ΔMKN
Suy ra: \(\widehat{MHN}=\widehat{MKN}=90^0\)