K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(MH^2=HN\cdot HP\)

\(\Leftrightarrow HP=\dfrac{2.4^2}{1.8}=3.2\left(cm\right)\)

Diện tích tam giác MNP là:

\(S_{MNP}=\dfrac{MH\cdot NP}{2}=\dfrac{2.4\cdot5}{2}=6\left(cm^2\right)\)

4 tháng 8 2021

Áp dụng hệ thức trong tam giác vuông:

`MH^2 =NH.PH`

`=>PH=MH^2 : NH = 2,4^2 : 1,8=3,2(cm)`

`=> NP=NH+PH=5(cm)`

`=> S= 1/2 . MH .NP =6(cm^2)`

Xét ΔMHN vuông tại H có 

\(\sin N=\dfrac{MH}{MN}\)

nên \(MN=\dfrac{16\sqrt{3}}{3}\left(cm\right)\)

=>\(MP=16\left(cm\right)\)

\(S=8\cdot\dfrac{16\sqrt{3}}{3}=\dfrac{128\sqrt{3}}{3}\left(cm^2\right)\)

DD
20 tháng 6 2021

\(NP=4,5+6=10,5\left(cm\right)\)

Áp dụng tích chất đường phân giác: 

\(\frac{MN}{NE}=\frac{MP}{EP}\Leftrightarrow\frac{MN}{4,5}=\frac{MP}{6}\Leftrightarrow MN=\frac{3}{4}MP\).

Áp dụng định lí Pythagore:

\(NP^2=MP^2+MN^2\)

\(\Leftrightarrow10,5^2=MP^2+\left(\frac{3}{4}MP\right)^2\Leftrightarrow MP=8,4\Rightarrow MN=6,3\)

\(MH=\frac{MN.MP}{NP}=\frac{8,4.6,3}{10,5}=5,04\)

\(NH=\frac{MN^2}{NP}=\frac{6,3^2}{10,5}=3,78\)

\(HE=NE-NH=4,5-3,78=0,72\)

\(S_{MHE}=\frac{1}{2}.MH.HE=\frac{1}{2}.0,72.5,04=1,8144\left(cm^2\right)\)

25 tháng 9 2018

MH =  3 5 cm

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt 

b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:

\(MH\cdot MD=MP^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(PH\cdot PN=MP^2\left(2\right)\)

Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)

Sửa đề: MP=24cm

NP=căn 18^2+24^2=30cm

NH=MN^2/NP=18^2/30=324/30=10,8cm

MH=18*24/30=14,4cm

 

28 tháng 7 2023

loading...

28 tháng 7 2023

(Tự vẽ hình)

- Xét △MNP vuông tại M, áp dụng định lí Pytago:

\(^{NM^2}\)+\(MP^2\)=\(NP^2\)

=\(72^2\)+\(96^2\)=\(NP^2\)

\(NP^2\)=\(72^2\)+\(96^2\)=14400

\(NP\)=\(\sqrt{14400}\)=120cm

 - Xét △MNP vuông tại M, đường cao MH, theo hệ thức lượng ta có:

\(MN^2\)=\(NH.NP\)

\(72^2\)=\(NH.120\)

\(NH\)=\(\dfrac{72^2}{120}\)=43,2 cm

\(MH.NP\)=\(MP.MN\)

⇔ \(MH\)=\(\dfrac{MP.MN}{NP}\)=\(\dfrac{96.72}{120}\)=3,6cm

 

9 tháng 9 2021

3\(\sqrt{5}\)

9 tháng 9 2021

con gi nua ko bi thieu de