K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

Tam giác MNP vuông tại M(gt)

Áp dụng định lý Py-ta-go,có:

MN2 + MP= NP2

62+MP2=102

36+MP2=100

=)MP2=100-36=64

=)MP=26

6 tháng 5 2018

thank ban

5 tháng 2 2022

Xét tam giác MHP vuông tại H có:

\(MH^2+HP^2=MP^2\left(Pytago\right)\)

\(\Rightarrow MH^2+6^2=10^2\Rightarrow MH=8\left(cm\right)\)

Mà \(MH+HN=MN=MP=10cm\)(do tam giác MNP cân tại M)

\(\Rightarrow8+HN=10\Rightarrow HN=2\left(cm\right)\)

Xét tam giác NHP vuông tại H có:

\(HN^2+HP^2=NP^2\left(Pytago\right)\)

\(\Rightarrow2^2+6^2=NP^2\Rightarrow NP=2\sqrt{10}\left(cm\right)\)

6 tháng 2 2022

Cảm ơn bạn nhìuvui

14 tháng 3 2022

undefined

14 tháng 3 2022

hình nha

19 tháng 3 2022

A

Bài 1: 

a) Ta có: MN2+MP2=152+202=625

               NP2=252=625

=> MN2+MP2=NP2

=> \(\Delta MNP\)vuông tại M ( theo định lý Py-ta-go đảo)

=> đpcm

b) Ta có I là trung điểm MP

=> \(IM=IP=\frac{MP}{2}=\frac{20}{2}=10\left(cm\right)\)

Xét \(\Delta MNI\)vuông tại M có:

MN2+MI2=NI2 ( theo định lý Py-ta-go)

= 152+102=325

=> NI= \(\sqrt{325}\approx18\left(cm\right)\)

Bài 2: 

Xét \(\Delta ABD\)vuông tại D có:

\(AD^2+BD^2=AB^2\)(Theo định lý Py-ta-go)

\(\Rightarrow AD^2+15^2=17^2\)

\(\Rightarrow AD^2=17^2-15^2=64=8^2\)

\(\Rightarrow AD=8\left(cm\right)\)

Lại có: AC=AD+DC

=> 17=8+DC

=> DC=9 cm

Xét \(\Delta BDC\)vuông tại D có:

\(BD^2+DC^2=BC^2\)(Theo định lý Py-ta-go)

\(\Rightarrow BC^2=15^2+9^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17\left(cm\right)\)

Vậy BC\(\approx\)17 cm

9 tháng 4 2017

a) xét tam giác MHN và tam giác MHP có

         \(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)

         MN = MP ( tam giác MNP cân tại M)

         MH chung

=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)

b) vì tam giác MHN = tam giác MHP (câu a)

=> \(\widehat{M1}\)\(\widehat{M2}\)(2 góc tương ứng)

=> MH là tia phân giác của \(\widehat{NMP}\)

9 tháng 4 2017

bạn tự vẽ hình nhé

a.

vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)

Xét tam giác MHN và tam giác MHP

có: MN-MP(CMT)

 \(\widehat{N}\)=\(\widehat{P}\)(CMT)

MH là cạnh chung

\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)

=> Tam giác MHN= Tam giác MHP(ch-gn)

=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG)          (1)

và NH=PH( 2 cạnh tương ứng)

mà H THUỘC NP=> NH=PH=1/2NP                               (3)

b. Vì H năm giữa N,P

=> MH nằm giữa MN và MP                                           (2)

Từ (1) (2)=> MH là tia phân giác của góc NMP

c. Từ (3)=> NH=PH=1/2.12=6(cm)

Xét tam giác MNH có Góc H=90 độ

=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)

hay \(10^2=6^2+MH^2\)

=>\(MH^2=10^2-6^2\)

\(MH^2=64\)

=>MH=8(cm)