K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMIN vuông tại I có IE là đường cao ứng với cạnh huyền MN

nên \(ME\cdot MN=MI^2\left(1\right)\)

Xét ΔMIP vuông tại I có IF là đường cao ứng với cạnh huyền MP

nên \(MF\cdot MP=MI^2\left(2\right)\)

Từ (1) và (2) suy ra \(ME\cdot MN=MF\cdot MP\)

hay \(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Xét ΔMEF vuông tại M và ΔMPN vuông tại M có 

\(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Do đó: ΔMEF\(\sim\)ΔMPN

22 tháng 9 2021

CM : MO vuông góc với EF cơ mà

 

a: Xét ΔMIN vuông tại I có IE là đường cao ứng với cạnh huyền MN

nên \(ME\cdot MN=MI^2\left(1\right)\)

Xét ΔMIP vuông tại I có IF là đường cao ứng với cạnh huyền MP

nên \(MF\cdot MP=MI^2\left(2\right)\)

Từ (1) và (2) suy ra \(ME\cdot MN=MF\cdot MP\)

hay \(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Xét ΔMEF vuông tại M và ΔMPN vuông tại M có 

\(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Do đó: ΔMEF\(\sim\)ΔMPN

24 tháng 9 2021

CMR MO vuông góc với EF

a: Xét tứ giác MNDH có

\(\widehat{MHN}=\widehat{MDN}=90^0\)

Do đó: MNDH là tứ giác nội tiếp

b: Xét ΔNDH và ΔNIP có

\(\widehat{DNH}\) chung

\(\widehat{NDH}=\widehat{NIP}\)

Do đó: ΔNDH∼ΔNIP

21 tháng 8 2019

M N P K E F 1 1 1

mk chỉ nêu hướng giải còn bn tự trình bày nha

a,Ta có MN=3cm ,MP=4cm

=>NP=5cm

Ta có MN2=NK.NP  (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG )

=>NK=32:5=1,8cm

T2 BN TÍNH ĐC KP

Lại có MK2=NK.KP (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG)

=>MK=2,4cm

Lại có MK2=MF.MP

=>MF=1,44cm

 b, bn C/m  MEKF là hcn =>\(\widehat{M_1}=\widehat{E_1}\)

Ta có \(\widehat{M_1}+\widehat{N}=90^O,\widehat{M_1}=\widehat{E_1}\)

=> \(\widehat{E_1}+\widehat{N}=90^O\)

Lại có \(\widehat{E_1}+\widehat{F_1}=90^O\)

\(\Rightarrow\widehat{F_1}=\widehat{N}\)=> \(\Delta EFM\)ĐỒNG DẠNG VS\(\Delta PNM\)(dpcm)

tk mk nha

chúc bn học giỏi

21 tháng 8 2019

mk làm được câu a,b rồi . Mình cần câu c cơ