K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: PN=10cm

b: Xét ΔPMK vuông tại M và ΔPEK vuông tại E có

PK chung

\(\widehat{MPK}=\widehat{EPK}\)

Do đó: ΔPMK=ΔPEK

c: Xét ΔMKD vuông tại M và ΔEKN vuông tại E có

KM=KE

\(\widehat{MKD}=\widehat{EKN}\)

DO đó: ΔMKD=ΔEKN

Suy ra: KD=KN

d: Ta có: PM+MD=PD

PE+EN=PN

mà PM=PE

và MD=EN

nên PD=PN

hayΔPDN cân tại P

25 tháng 12 2023

a) Xét △MIQ và △NIP ta có:

            IM=IN (gt)

       ∠MIQ=∠NIP(2 góc đối đỉnh)

          MQ=MP (gt)

Vậy : △MIQ = △NIP (c.g.c)

Vậy: QM = NP (2 cạnh tương ứng)

⇒ ∠MQI = ∠IPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong

Vậy : QM // NP

b) Xét △MEK và △PEN ta có:

            EM = EP (gt)

       ∠MEK =∠PEN (2 góc đối đỉnh)

            EK = EN (gt)

⇒ △MEK = △PEN (c.g.c)

⇒ ∠EMK = ∠EPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong

Vậy: MK//PN

c) Từ câu a và câu b, ta có : QM//NP và MK//PN

Vậy M,Q,K thẳng hàng.(1)

Ta có:△MEK=△PEN (theo câu b)

⇒ MK=NP (2 cạnh tương ứng)

⇒ QM=NP (theo câu a) và MK=NP(chứng minh trên)⇒QM=MK (2)

Từ (1) và (2), suy ra: M là trung điểm của đoạn thẳng QK.

 

25 tháng 12 2023

Mình ko biết là A trog câu c) ở đâu nên mình đổi thành Q nha!

20 tháng 12 2020

a) Xét ΔPIM và ΔPIN có 

PM=PN(gt)

PI chung

MI=NI(I là trung điểm của MN)

Do đó: ΔPIM=ΔPIN(c-c-c)

b) Ta có: PM=PN(gt)

nên P nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MI=NI(I là trung điểm của MN)

nên I nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra PI là đường trung trực của MN

hay PI\(\perp\)MN(đpcm)

c) Xét ΔPIM vuông tại I và ΔEIN vuông tại I có 

PI=EI(gt)

IM=IN(I là trung điểm của MN)

Do đó: ΔPIM=ΔEIN(hai cạnh góc vuông)

nên PM=EN(hai cạnh tương ứng)

10 tháng 5 2016

tự vẽ hình

a)Xét tam giác PMN vuông ở M và tam giác PMA vuông ở M có:

PM:cạnh chung

MN=MA (gt)

=>tam giác PMN=tam giác PMA (2 cạnh góc vuông)

=>PN=PA (cặp cạnh t.ứ)

b)Xét tam giác PMN vuông ở M có:

PM2+MN2=PN2 (Pytago)

=>PM2=PN2-MN2=52-42=9

=>PM=3(cm)

Ta có: MA+MN=AN (M \(\in\) AN),mà MA=MN(gt)

=>M là trung điểm của AN

=>PM là đg trung tuyến ứng với cạnh AN (1)

Vì B là trung điểm của AP (gt)

=>NB là đg trung tuyến  ứng với cạnh AP (2)

Từ (1);(2) lại có NB cắt PM tại G

=>G là trọng tâm trong tam giác APM

=>\(GP=\frac{2}{3}PM=\frac{2}{3}.3=2\left(cm\right)\)

a: \(MN=\sqrt{16^2+12^2}=20\left(cm\right)\)

b: Xét ΔPMQ và ΔNSQ có

QP=QN

\(\widehat{PQM}=\widehat{NQS}\)

QM=QS

Do đó: ΔPMQ=ΔNSQ

a: Xét ΔPAN có

PM vừa là đường cao, vừa là trung tuyến

=>ΔPAN cân tại P

b: \(PM=\sqrt{5^2-4^2}=3\left(cm\right)\)

Xét ΔPAN có 

NB,PM là trung tuyến

NB cắt PM tại G

=>G là trọng tâm

GP=2/3*3=2cm

c: CI là trung trực của MP

=>I là trung điểm của MP và CI vuông góc MP tại I

Xét ΔMPN có

I là trung điểm của PM

IC//MN

=>C là trung điểm của PN

=>PM,NB,AC đồng quy