K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔMNK và ΔMPK có

MN=MP

MK chung

KN=KP

=>ΔMNK=ΔMPK

b: ΔMNK=ΔMPK

=>góc NMK=góc PMK

a: Xét ΔMNK và ΔMPK có 

MN=MP

NK=PK

MK chung

Do đó: ΔMNK=ΔMPK

b: Ta có: ΔMNP cân tại M

mà MK là đường trung tuyến

nên MK là đường cao

a: Xét ΔMNA và ΔMPA có

MN=MP

NA=PA

MA chung

=>ΔMNA=ΔMPA

b: ΔMNP cân tại M

mà MA là trung tuyến

nên MA là phân giác của góc NMP

c: ΔMNP cân tại M

mà MA là trung tuyến

nên MA vuông góc NP

d: DN=DP

nên D nằm trên trung trực của NP

mà MA là trung trực của NP

nên M,A,D thẳng hàng

24 tháng 12 2021

a: Xét ΔMNK và ΔMPK có

MN=MP

MK chung

NK=PK

Do đó: ΔMNK=ΔMPK

b: Ta có: ΔMNP cân tại M

mà MK là đường trung tuyến

nên MK là đường cao

24 tháng 12 2021

ctv  từ viết tắt của cộng tác viên, cộng tác viên  một nghề mà người làm việc không có trong danh sách nhân viên chính thức của cty, dự án hay cơ quan tổ chức tuyển dụng họ"

24 tháng 3 2020

M N P I

a) Xét tam giác MNP vuông tại M có I là trung điểm NP (gt)

=> MI cũng là phân giác trong của \(\widehat{NMP}\)

=> \(\widehat{NMI}=\widehat{IMP}\)

Xét tam giác MIP và tam giác MIN có:

IM chung

\(\widehat{NMI}=\widehat{IMP}\left(cmt\right)\)

NI=PI ( I là trung điểm NP)

=> Tam giác MIP=tam giác MIN (cgc) 

b) Có tam giác MIP= tam giác MIN (cmt)

=> MP=MN (2 cạnh tương ứng)

Xét tam giác MNP vuông tại M có MP=MN (cmt)

=> Tam giác MNP vuông cân tại M

Có MI là đường trung tuyển tam giác MNP

Mà trong tam giác vuông cân đường trung tuyến trùng với đường cao

=> MI _|_ NP (đpcm)

c) F là điểm gì vậy?

25 tháng 11 2016

a) vì tam giác MNPcó MN=MP=> tam giác MNP cân tại M mà MI là đường trung tuyến nên MI cũng là đường phân giác

xét tam giác MNI=tam giác MPI (cgc)

b) Theo câu a tam giác MNP= tam giác MPI =>góc MIN = góc MIP

Ta lại có MIN+MIP=180 độ=>MIN=MIP=90 độ=>MI vuông góc với NP

25 tháng 11 2016

a) VÌ TAM GIÁC MNP CÓ MN=MP=>TAM GIÁC MNP CÂN TẠI M=>ĐƯỜNG TRUNG TUYẾN MI CŨNG LÀ ĐƯỜNG PHÂN GIÁC

XÉT TAM GIÁC MNI VÀ TAM GIÁC MPI CÓ

MN=MP

NMI=PMI

MI CHUNG

=> TAM GIÁC MNI = TAM GIÁC MPI (CGC)

b) THEO CÂU a:TAM GIÁC MNI=TAM GIÁC MPI=>GÓC MIN=GÓC MIP

MÀ MIN+MIP=180độ=>MIN=MIP=90 độ=>MI vuông góc với NP

12 tháng 5 2017

a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)

b) xét tam giác MNI và MPI có 

    MI chung 

    MN=MP(GT)

    IN=IP(MI là trung tuyến nên I là trung điểm NP)

SUY ra tam giác MNI=MPI(C-C-C)

c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)

d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I

   Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP

    Mà NP=12cm(gt) suy ra NI=12x1/2=6cm

   xét tam giác vuông MNI có

    NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)

   Suy ra MI2=NM2-NI2

 mà NM=10CM(gt) NI=6CM(cmt)

suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8

mà MI>0 Suy ra MI=8CM (đpcm)

ế) mik gửi cho bn bằng này nhé 

12 tháng 5 2017

a) Vì MN=MP => tam giác MNP là tam giác cân tại M.

b)Xét tam giác MIN và tam giác MIP có:

           MN=MP (vì tam giác MNP cân)

           \(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)

            NI=PI(vì MI là trung tuyến)

=> tam giác MIN=tam giác MIP(c.g.c)

c) Ta có: MN=MP

              IN=IP

=> M,I thuộc trung trực của NP

Hay MI là đường trung trực của NP

d) IN=IP=NP/2=12/2=6(cm)

Xét tam giác MIN có góc MIN =90*

 =>  MN^2=MI^2 + NI^2

 =>  MI^2=MN^2-NI^2

 =>  MN^2 = 10^2 - 6^2

 =>  MN = 8

e) Tam giác HEI có goc IHE=90*

 => góc HEI + góc HIE= 90*

Mà góc HIE = góc MEF/2

 => góc MEF/2 + góc HEI = 90*   (1)

Mà góc MEF + góc HEI + góc IEF = 180*

 => góc MEF/2 + góc IEF = 90*     (2)

  Từ (1) và (2)   =>  góc HEI = góc IEF

Hay EI là tia phân giác của góc HEF

20 tháng 12 2019

B ở đâu vậy bạn ? Trong đề làm gì có nói kẻ B mà từ B đã kẻ đường vuông góc rồi ?

20 tháng 12 2019

từ P nha

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔNMK có NM=NK

nên ΔNMK cân tại N

mà \(\widehat{MNK}=60^0\)

nên ΔNMK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)