K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNK và ΔMPK có 

MN=MP

NK=PK

MK chung

Do đó: ΔMNK=ΔMPK

b: Ta có: ΔMNP cân tại M

mà MK là đường trung tuyến

nên MK là đường cao

20 tháng 12 2019

B ở đâu vậy bạn ? Trong đề làm gì có nói kẻ B mà từ B đã kẻ đường vuông góc rồi ?

20 tháng 12 2019

từ P nha

4 tháng 12 2016

Xét tam giác MKN và tam giác PKH ta có

MK=KP ( K là trung điểm MP )

NK=KH ( K là trung điểm NH )

góc MKN = góc PKH ( doi dinh)

-> tam giac MKN = tam giac PKH (c-g-c)
b) 

Xét tam giác MKH và tam giác PKN ta có

MK=KP ( K là trung điểm MP )

HK=KN( K là trung điểm NH )

góc MKH = góc PKN ( doi dinh)

-> tam giac MKH = tam giac PKH (c-g-c)

-> góc HMK = góc  HPN

mà 2 goc o vi tri sole trong

nên MH// NP

c) ta có

góc MNK = góc KHP (tam giac MKN = tam giac PKH)

mà 2 goc o vi trí sole trong

nên NM // PH

mà NM vuông góc MP tại M ( tam giác MNP vuông tại M)

-> PH vuông góc MP

25 tháng 11 2016

a) vì tam giác MNPcó MN=MP=> tam giác MNP cân tại M mà MI là đường trung tuyến nên MI cũng là đường phân giác

xét tam giác MNI=tam giác MPI (cgc)

b) Theo câu a tam giác MNP= tam giác MPI =>góc MIN = góc MIP

Ta lại có MIN+MIP=180 độ=>MIN=MIP=90 độ=>MI vuông góc với NP

25 tháng 11 2016

a) VÌ TAM GIÁC MNP CÓ MN=MP=>TAM GIÁC MNP CÂN TẠI M=>ĐƯỜNG TRUNG TUYẾN MI CŨNG LÀ ĐƯỜNG PHÂN GIÁC

XÉT TAM GIÁC MNI VÀ TAM GIÁC MPI CÓ

MN=MP

NMI=PMI

MI CHUNG

=> TAM GIÁC MNI = TAM GIÁC MPI (CGC)

b) THEO CÂU a:TAM GIÁC MNI=TAM GIÁC MPI=>GÓC MIN=GÓC MIP

MÀ MIN+MIP=180độ=>MIN=MIP=90 độ=>MI vuông góc với NP

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔNMK có NM=NK

nên ΔNMK cân tại N

mà \(\widehat{MNK}=60^0\)

nên ΔNMK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔMNK có NM=NK

nên ΔMNK cân tại N

Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)

nên ΔMNK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

a: Xét ΔMHL vuông tại L và ΔMKL vuông tại L có 

ML chung

HL=KL

Do đó: ΔMHL=ΔMKL

b: Xét ΔMHN và ΔMKN có 

MH=MK

\(\widehat{HMN}=\widehat{KMN}\)

MN chung

Do đó: ΔMHN=ΔMKN

Suy ra: \(\widehat{MHN}=\widehat{MKN}=90^0\)