\(\in\) NP). Biết MN=8cm, MP=10cm, DP=7,5cm<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔMNP có MD là đường phân giác ứng với cạnh NP(gt)

nên \(\frac{ND}{NM}=\frac{DP}{PM}\)

\(\Leftrightarrow\frac{ND}{8}=\frac{7.5}{10}\)

hay \(ND=\frac{7.5\cdot8}{10}=\frac{60}{10}=6cm\)

Vậy: ND=6cm

b) Xét ΔMNP có DC//MP(gt)

nên \(\frac{NC}{CM}=\frac{ND}{DP}\)

\(\Leftrightarrow\frac{NC}{CM}=\frac{6}{7.5}\)

hay \(\frac{NC}{6}=\frac{CM}{7.5}\)

Ta có: NC+CM=MN=8cm(C nằm giữa N và M)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{NC}{6}=\frac{CM}{7.5}=\frac{NC+CM}{6+7.5}=\frac{NM}{13.5}=\frac{8}{13.5}=\frac{16}{27}\)

Do đó: \(\frac{NC}{6}=\frac{16}{27}\)

\(\Leftrightarrow NC=\frac{16\cdot6}{27}=\frac{96}{27}=\frac{32}{9}\simeq3.55cm\)

Vậy: NC\(\simeq\)3,55cm

a) Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(NP^2=MN^2+MP^2\)

\(\Leftrightarrow NP^2=36^2+48^2=3600\)

hay NP=60(cm)

Xét ΔMNP có MK là đường phân giác ứng với cạnh NP(gt)

nên \(\dfrac{NK}{MN}=\dfrac{KP}{MP}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{NK}{36}=\dfrac{KP}{48}\)

mà NK+KP=NP=60cm(K nằm giữa N và P)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{NK}{36}=\dfrac{KP}{48}=\dfrac{NK+KP}{36+48}=\dfrac{60}{84}=\dfrac{5}{7}\)

Do đó:

\(\dfrac{NK}{36}=\dfrac{5}{7}\)

hay \(NK=\dfrac{180}{7}cm\)

Vậy: \(NK=\dfrac{180}{7}cm\)

12 tháng 3 2017

cho tam giác MNP, góc M=90o,đường cao MK 

a, cmr MK2=NK.KP

b, Tính MK,tính diện tích tam giác MNP, biết NK =4cm,KP=9cm

Chọn D

13 tháng 9 2023

Vì \(MD\) là tia phân giác góc \(M\left( {D \in NP} \right)\) nên theo tính chất đường phân giác ta có:

\(\frac{{DN}}{{DP}} = \frac{{MN}}{{MP}};\frac{{DN}}{{MN}} = \frac{{DP}}{{MP}};\frac{{DP}}{{DN}} = \frac{{MP}}{{MN}};\frac{{DP}}{{MP}} = \frac{{DN}}{{MN}}\)