Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)ANM và \(\Delta\)ABM có :
- MN = MB ( gt )
- Góc AMN = góc AMB ( vì MA là phân giác )
- MA : cạnh chung
\(\Rightarrow\)\(\Delta\)ANM = \(\Delta\)ABM ( c . g . c )
\(\Rightarrow\)AN = AB ( hai cạnh tương ứng )
b) Gọi giao điểm giữa NB và MA là I
Xét \(\Delta\)INM và \(\Delta\)IBM có :
- MN = MB ( gt )
- Góc IMN = góc IMB ( vì MI là phân giác )
- MI : cạnh chung
\(\Rightarrow\)\(\Delta\)INM = \(\Delta\)IBM ( c . g . c )
\(\Rightarrow\)Góc MIN = góc MIB ( hai góc tương ứng )
Mà góc MIN + góc MIB = 180 ( do kề bù )
nên góc MIN = góc MIB = 180 ÷ 2 = 90 độ hay NB vuông góc với MA .
a: Xét ΔMNA và ΔMBA có
MN=MB
góc NMA=gócBMA
MA chung
Do đó: ΔMNA=ΔMBA
=>AN=AB
b: MN=MB
AN=AB
=>MA là trung trực của NB
=>MA vuông góc với NB
c: Xét ΔMCP có MN/MC=MB/MP
nên NB//CP
d: Xét ΔANC và ΔABP có
AN=AB
góc ANC=góc ABP
NC=BP
Do đó: ΔANC=ΔABP
=>góc NAC=góc BAP
=>góc NAC+góc NAB=180 độ
=>B,A,C thẳng hàng
bạn tự vẽ hình nha
a) xét tg ABM và tg CDM có
MA=MC(M là trung điểm AC )
\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh )
MB=MD(gt)
\(\Rightarrow\)tg ABM=tg CDM (c-g-c)
b) bạn xem lại đề bài nha mik nghĩ là đề sai
c) ta có MB=MD,MA=MC(gt)
mà M lại là trung điểm của BD,AC
\(\Rightarrow\)ABCD là hình chữ nhật
có E là trung diểm BC
mà EM cắt AD tại F
\(\Rightarrow F\)là trung điểm AD (dpcm)
P/s : sửa đề : MB = MD B C E M F D A
a) Xét tam giác ABM và tam giác CDM có :
AM = CM ( vì M là trung điểm của AC )
Góc AMB = góc CMD ( 2 góc đối đỉnh )
MB = MD ( GT )
=> tam giác ABM = tam giác CDM ( c - g - c )
b) Theo chứng minh trên , ta có : tam giác ABM = tam giác CDM
=> Góc BAM = Góc MCD ( 2 góc tương ứng )
Mà góc BAM = 90o ( Tam giác ABC vuông tại A )
=> Góc MCD = 90o
=> AC vuông góc với DC tại C
c) +) Xét tam giác ABC có :
E là trung điểm của BC ( GT )
M là trung điểm của AC ( GT )
=> EM là đường trung bình của tam giác ABC
=> EM // AB ( tính chất )
Mà AB // CD ( do AC \(\perp\)CD ; AC \(\perp\) AB )
=> EM // CD hay MF // CD
+) Xet tam giác ACD có :
M là trung điểm của AC
MF // CD
=> F là trung điểm của AD ( điều phải chứng mình )
Bài 3 :
A B C H K I
Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K
Ta có :AH + HB = AB
AK + KC = AC
mà AB = AC ( tam giác ABC cân tại A)
=> AH + HB = AK + KC
mà CH và Bk lần lượt là trung trực của AB ,AC
=> AH = HB = AK = KC
Xét tam giác AHI và tam giác AKI có
AHI = AKI = 90
AH = AK ( cmt )
AI : cạnh chung
=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )
=> ^HAI = ^KAI ( 2 góc tương ứng )
=> AI là tia phân giác của ^A
Vậy AI là tia phân giác của ^A
Bài 1
A B C D E H K
a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB
Ta có : ^ABC + ^ABD = 180 (kề bù )
^ACB + ^ ACE = 180 ( kề bù )
mà ^ABC = ^ACB
=> ^ABD = ^ ACE
Xét tam giác ABD và tam giác ACE có :
AB =AC ( tam giác ABc cân tại a )
^ABD = ^ACE ( cmt )
BD = CE ( gt)
=> tm giác ABD = tam giác ACE ( c.g.c)
=> ^ADB = ^AEC ( 2 góc tương ứng )
hay ^HDB = ^KEC
Xét tam giác HBD và tam gisc KEC có :
^DHB = ^EKC = 90
BD = CE (gt)
HDB = KEc ( cmt )
=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )
=> HB = Ck ( 2 canh tương ứng )
Vậy HB = Ck
b,Xét tam giác ABH và tam giác ACk có
AHB = AKC = 90
HB = CK ( cmt )
AB = AC
=> tam giác ABH = tam giác ACK ( anh huyền - canh góc vuồng )
Vậy tam giác ABH =tam giác ACK
M P N 3 4 A C G
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)
a) Xét \(\Delta MAP\)và \(\Delta BAN\),ta có:
\(MA=BA\left(gt\right)\)
\(\widehat{MAP}=\widehat{BAN}\)(Vì đối đỉnh)
\(AP=AN\left(gt\right)\)
=> \(\Delta MAP=\Delta BAN\)\(\left(c.g.c\right)\)
b) Vì \(\Delta MAP=\Delta BAN\)=> \(MP=NB\)(2 cạnh tương ứng)
c) Từ điểm N gióng xuống MB một đường thẳng và cắt MB tại E, tạo với đoạn thẳng MB 1 góc = 90 độ.
Từ điểm P gióng xuống MB một đường thẳng và cắt MB tại F, tạo với đoạn thẳng MB 1 góc = 90 độ.
mk cảm ơn bạn