Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M N P H O
a, sửa thành tam giác MNH nhá =))
Xét tam giác MNH và tam giác MPH
MH_chung
MN = MP (gt)
^NMH = ^PMH ( vì MH là p/g )
=> tam giác MNH = tam giác MPH ( c.g.c )
a) xét tam giác MHN và tam giác MHP có
\(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)
MN = MP ( tam giác MNP cân tại M)
MH chung
=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)
b) vì tam giác MHN = tam giác MHP (câu a)
=> \(\widehat{M1}\)= \(\widehat{M2}\)(2 góc tương ứng)
=> MH là tia phân giác của \(\widehat{NMP}\)
bạn tự vẽ hình nhé
a.
vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)
Xét tam giác MHN và tam giác MHP
có: MN-MP(CMT)
\(\widehat{N}\)=\(\widehat{P}\)(CMT)
MH là cạnh chung
\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)
=> Tam giác MHN= Tam giác MHP(ch-gn)
=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG) (1)
và NH=PH( 2 cạnh tương ứng)
mà H THUỘC NP=> NH=PH=1/2NP (3)
b. Vì H năm giữa N,P
=> MH nằm giữa MN và MP (2)
Từ (1) (2)=> MH là tia phân giác của góc NMP
c. Từ (3)=> NH=PH=1/2.12=6(cm)
Xét tam giác MNH có Góc H=90 độ
=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)
hay \(10^2=6^2+MH^2\)
=>\(MH^2=10^2-6^2\)
\(MH^2=64\)
=>MH=8(cm)
a) Xét \(\Delta MNH\)và \(\Delta MPH\)có:
\(MN=MP\)(gt)
\(\widehat{MNH}=\widehat{MPH}\)(gt)
\(NH=PH\)(gt)
suy ra: \(\Delta MNH=\Delta MPH\)(c.g.c)
b) \(\Delta MNH=\Delta MPH\)
\(\Rightarrow\)\(\widehat{MHN}=\widehat{MHP}\)
mà \(\widehat{MHN}+\widehat{MHP}=180^0\)(kề bù)
\(\Rightarrow\)\(\widehat{MHN}=\widehat{MHP}=90^0\)
\(\Rightarrow\)\(MH\)\(\perp\)\(NP\)
a, Xét tam giác MNH và tam giác MPH có
MN=MP(gt)
NH=PH(gt)
MH chung
=> tam giác MNH=tam giác MPH (c.c.c)
b, Từ a : tam giác MNH = tam giác MPH => góc MHN =góc MHP
Mà góc MHN+góc MHP=180 độ (kề bù)=> Góc MNH=góc MHP =180:2=90 độ
=> MH vuông góc với NP
M H P K I N O E
a) C/m MH là phân giác góc IMK.
-Xét tam giác MNP có AH là đường cao, vừa là đường phân giác.
tức MH là phân giác góc NMP
hay Mh là phân giác IMK.
( Cách 2 :
Xét hai tam giác vuông MNH và MPH, có:
góc MNH = góc MPH ( tam giác MNP cân)
MN= MP ( tam giác MNP cân)
=> hai tam giác bằng nhau ( cạnh huyền - góc nhọn)
=> NMH =PMH
hay MH là phân giác IMK.)
b) IK // NP
mà NP vuông MH
=> IK vuông góc MH.
ta có tam giác vuông MOI = tam giác vuông MOK (c.g.c)
=> OI=OK
Vậy MH là trung trực IK
c)
Chứng minh tam giác OIH = tam giác EHN
=> HNE =IHO
ta có
OIH + OHI =90 độ
<=> OIH + HNE =90 độ
Suy ra IKN = 90 độ
Vậy tam giác IKN vuông tại K.
a. xét tg MND và tg MPD có : MD chung
^PMD = ^NMD do MD là pg của ^PMN (Gt)
MN = MP do tg MNP cân tại M (gt)
=> tg MND = tg MPD (c-g-c)
b. tg MNP cân tại A (gt) có MD là pg
=> MD đồng thời là đường cao (đl) và là trung tuyến => DN = 6
=> tg MND vuông tại D (Đn)
=> MN^2 = MD^2 + DN^2 (đl Pytago)
DN = 6; MN =10
=> MD = 8 do MD > 0
c.
giúp mình nhanh ạ mai thi rồi
a) Xét ΔMNH và ΔMPH có
MN=MP(ΔMNP cân tại M)
\(\widehat{NMH}=\widehat{PMH}\)(MH là tia phân giác của \(\widehat{NMP}\))
MH chung
Do đó: ΔMNH=ΔMPH(c-g-c)