Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A B C M D E F
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
Ta có: tam giác ABM = tam giác ACM
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
=> AM \(\perp\)BC (đpcm)
b/ Xét tam giác BDA và tam giác EDC có:
BD = DE (GT)
\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)
AD = DC (GT)
Vậy tam giác BDA = tam giác EDC (c.g.c)
=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CE (đpcm)
c/ Đã vẽ và kí hiệu trên hình
d/ Xét tam giác AMB và tam giác CMF có:
AM = MF (GT)
\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)
BM = MC (GT)
Vậy tam giác AMB = tam giác CMF (c.g.c)
=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CF
Ta có: AB // CE (1)
Ta có: AB // CF (2)
Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng
a: XétΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét ΔAHM vuông tại H và ΔCKM vuông tại K có
MA=MC
\(\widehat{AMH}=\widehat{CMK}\)
DO đó: ΔAHM=ΔCKM
Suy ra: MH=MK
Xét tứ giác AHCK có
Mlà trung điểm của AC
M là trung điểm của HK
Do đó: AHCK là hình bình hành
Suy ra: AK=CH
(Bạn tự vẽ hình nhé)
a/ \(\Delta AMK\)và \(\Delta BMC\)có: AM = BM (M là trung điểm của AB)
\(\widehat{AMK}=\widehat{BMC}\)(đối đỉnh)
MK = MC (gt)
=> \(\Delta AMK\)= \(\Delta BMC\)(c. g. c) (đpcm)
b/ Ta có: \(\Delta AMK\)= \(\Delta BMC\)(cm câu a)
=> \(\widehat{K}=\widehat{C}\)(hai cạnh tương ứng bằng nhau ở vị trí so le trong) => KA // BC (đpcm)
c/ Giả sử K, A, H không thẳng hàng (*)
\(\Delta ANH\)và \(\Delta CNB\)có:
AN = NC (N là trung điểm của AC)
\(\widehat{ANH}=\widehat{BNC}\)(đối đỉnh)
NH = NB (gt)
=> \(\Delta ANH\)= \(\Delta CNB\)(c. g. c)
=> \(\widehat{H}=\widehat{B}\)(hai cạnh tương ứng bằng nhau ở vị trí so le trong) => AH // BC (đpcm)
(*) => Có hai đường thẳng KA và AH cùng song song với BC (Vô lý! Trái với tiên đề Ơclit)
=> (*) sai
=> K, A, H thẳng hàng (đpcm)
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB