Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M H K E F 1 2 I
a) * Vì tam giác ABC cân tại A nên đường cao đồng thời là đường trung tuyến ( t/c )
=> AM là đường trung tuyến ứng với cạnh BC
=> M là trung điểm của BC => MB = MC = 1/2 BC
b)-Vì tam giác ABC cân nên góc B = góc C
Vì MH vuông góc AB, MJ vuông góc AC nên \(\widehat{MHB}=90^o;\widehat{MKC}=90^o\)
Xét tam giác MHB và tam giác MKC có :
góc MHB = góc MKC ( =90 độ )
MB = MC ( cm ở câu a )
góc B = góc C (cmt )
Suy ra : \(\Delta MHB=\Delta MKC\) ( cạnh huyền - góc nhọn )
=> MH = MK ( cặp cạnh tương ứng )
* Gọi I là giao điểm của AM và HK
Vì tam giác MHB = tam giác MKC ( cmt )
=> BH = CK ( cặp canh t/ư)
Mà AB = AC ( tam giác ABC cân tại A )
=> AB - BH = AC - CK
=> AH = AK
=> Tam giác AHK cân tại A ( d/h )
Vì tam giác ABC cân tại A nên đường cao đồng thời là đường phân giác
=> AM là tia phân giác của góc BAC
Hay AI là tia phân giác của góc BAC
- Vì tam giác AHK cân nên phân giác đồng thời là đường cao, đường trung tuyến (t/c)
=> AI là đường cao đồng thời là trung tuyến của tam giác AHK
=> AM vuông góc HK tại I và I là trung điểm của HK
=> AM là đường trung trực của HK ( d/h )
c ) * Vì MH vuông góc AB tại H, E thuộc MH nên AM vuông góc AB tại H
Mà H là trung điểm EM
=> AB là đường trung trực EM
=> AE = AM ( t/c )
Tương tự : AC là đường trung trực của MF
=> AF = AM (t/c)
Suy ra : AE = AF ( = AM )
=> Tam giác AEF cân tại A ( d/h )
A B C M I II K H I
a) +) Xét tam giác AMB và tam giác AMC có:
BM=MC (M là trung điểm BC)
AB=AC (tam giác ABC cân tại A)
AM chung
=> Tam giác AMB= tam giác AMC (ccc) (đpcm)
+) Tam giác ABC cân tại A (gt) và M là trung điểm BC(gt)
AM vừa là đường cao vừa là đường trung tuyến của tam giác ABC
=> AM là phân giác \(\widehat{BAC}\)(đpcm)
b) Xét tam giác KMB và tam giác HMC có
MB=MC (M là trung điểm BC)
\(\widehat{BKM}=\widehat{CHM}=90^o\)
\(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
=> Tam giác KMB=tam giác HMC (gcg) (đpcm)
c) Có tam giác KMB= tam giác HMC (cmt)
=> MK=MH (2 cạnh tương ứng (đpcm)
d)
M H K I
Cm: a) Xét t/giác MHI và t/giác MKI
cí: MH = MK (gt)
MI : chung
HI = KI (gt)
=> t/giác MHI = t/giác MKI (c.c.c)
b) Ta có: t/giác MHI = t/giác MKI (cmt)
=> \(\widehat{H}=\widehat{K}\) (2 góc t/ứng)
c) Ta có: t/giác MHI = t/giác MKI (cmt)
=> \(\widehat{MIH}=\widehat{MIK}\) (2 góc t/ứng)
Mà \(\widehat{MIH}+\widehat{MIK}=180^0\) (kề bù)
=> \(\widehat{MIH}=\widehat{MIK}=90^0\)
=> MI \(\perp\)HK
mà HI = IK
=> MI là đường trung trực của HK