K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

áp dụng đ/l pitago ta đc:

IK^2 = HI^2 + HK^2

=>29^2 = 20^2 + HK^2

=>HK^2 = 29^2 - 20^2

=>HK^2 = 441

=> Hk = 21

a: HK=12cm

 b: Xét ΔIHM vuông tại H và ΔIEM vuông tại E có

IM chung

\(\widehat{HIM}=\widehat{EIM}\)

Do đó:ΔIHM=ΔIEM

c: Ta có: ΔIHM=ΔIEM

nên IH=IE; MH=ME

=>IM là đường trung trực của EH

14 tháng 5 2022

a, Xét Δ IHK vuông tại H, có :

\(IK^2=IH^2+HK^2\) (định lí Py - ta - go)

=> \(13^2=5^2+HK^2\)

=> \(HK^2=144\)

=> HK = 12 (cm)

b, Xét Δ HIM và Δ EIM, có :

\(\widehat{HIM}=\widehat{EIM}\) (IM là tia phân giác \(\widehat{HIE}\))

IM là cạnh chung

\(\widehat{IHM}=\widehat{IEM}=90^o\)

=> Δ HIM = Δ EIM (g.c.g)

c, Ta có : Δ HIM = Δ EIM (cmt)

=> HI = EI

=> Δ HIE cân tại I

Ta có :

Δ HIE cân tại I

IM là tia phân giác \(\widehat{HIE}\)

=> IM ⊥ EH

TK

IK2=HI2 +HK2=32+42 =25    (định lý pitago)   ⇒IK=5cm 

a) Áp dụng định lí Pytago vào ΔQMP vuông tại M, ta được:

\(PQ^2=MP^2+MQ^2\)

\(\Leftrightarrow PQ^2=3^2+4^2=25\)

hay PQ=5(cm)

Vậy: PQ=5cm

a: Xét ΔIHM vuông tại H và ΔINM vuông tại N có

IM chung

\(\widehat{HIM}=\widehat{NIM}\)

Do đó: ΔIHM=ΔINM

b: ta có: ΔIHM=ΔINM

nên HM=NM

c: Ta có: HM=MN

mà MN<MK

nên HM<MK

19 tháng 3 2020

A B C H 10cm 12cm

Xét \(\Delta ABH\)và \(\Delta ACH\)có:

\(AB=AC\)\(\Delta ABC\)cân tại A )

AH là cạnh chung

\(\widehat{AHB}=\widehat{AHC}\left(=90^0\right)\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(ch.gn\right)\)

\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )

b) Vì \(HB=HC\left(cmt\right)\)

\(\Rightarrow HB=HC=\frac{12}{2}=6cm\)

Xét \(\Delta ACH\left(\widehat{H}=90^0\right)\) có:

\(AC^2=AH^2+CH^2\)( định lý py-ta-go )

\(\Rightarrow10^2=AH^2+6^2\)

\(\Rightarrow AH^2=10^2-6^2\)

\(\Rightarrow AH^2=64\)

\(\Rightarrow AH=\sqrt{64}\)

\(\Rightarrow AH=8cm\)

Vậy \(AH=8cm\)

29 tháng 3 2022

các cao nhân giúp e vs e cần gấp

 

29 tháng 3 2022

câu a 

Áp dụng dl pytago

suy ra HI=6cm