Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: HK=12cm
b: Xét ΔIHM vuông tại H và ΔIEM vuông tại E có
IM chung
\(\widehat{HIM}=\widehat{EIM}\)
Do đó:ΔIHM=ΔIEM
c: Ta có: ΔIHM=ΔIEM
nên IH=IE; MH=ME
=>IM là đường trung trực của EH
a, Xét Δ IHK vuông tại H, có :
\(IK^2=IH^2+HK^2\) (định lí Py - ta - go)
=> \(13^2=5^2+HK^2\)
=> \(HK^2=144\)
=> HK = 12 (cm)
b, Xét Δ HIM và Δ EIM, có :
\(\widehat{HIM}=\widehat{EIM}\) (IM là tia phân giác \(\widehat{HIE}\))
IM là cạnh chung
\(\widehat{IHM}=\widehat{IEM}=90^o\)
=> Δ HIM = Δ EIM (g.c.g)
c, Ta có : Δ HIM = Δ EIM (cmt)
=> HI = EI
=> Δ HIE cân tại I
Ta có :
Δ HIE cân tại I
IM là tia phân giác \(\widehat{HIE}\)
=> IM ⊥ EH
TK
IK2=HI2 +HK2=32+42 =25 (định lý pitago) ⇒IK=5cm
a) Áp dụng định lí Pytago vào ΔQMP vuông tại M, ta được:
\(PQ^2=MP^2+MQ^2\)
\(\Leftrightarrow PQ^2=3^2+4^2=25\)
hay PQ=5(cm)
Vậy: PQ=5cm
a: Xét ΔIHM vuông tại H và ΔINM vuông tại N có
IM chung
\(\widehat{HIM}=\widehat{NIM}\)
Do đó: ΔIHM=ΔINM
b: ta có: ΔIHM=ΔINM
nên HM=NM
c: Ta có: HM=MN
mà MN<MK
nên HM<MK
A B C H 10cm 12cm
Xét \(\Delta ABH\)và \(\Delta ACH\)có:
\(AB=AC\)( \(\Delta ABC\)cân tại A )
AH là cạnh chung
\(\widehat{AHB}=\widehat{AHC}\left(=90^0\right)\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(ch.gn\right)\)
\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )
b) Vì \(HB=HC\left(cmt\right)\)
\(\Rightarrow HB=HC=\frac{12}{2}=6cm\)
Xét \(\Delta ACH\left(\widehat{H}=90^0\right)\) có:
\(AC^2=AH^2+CH^2\)( định lý py-ta-go )
\(\Rightarrow10^2=AH^2+6^2\)
\(\Rightarrow AH^2=10^2-6^2\)
\(\Rightarrow AH^2=64\)
\(\Rightarrow AH=\sqrt{64}\)
\(\Rightarrow AH=8cm\)
Vậy \(AH=8cm\)
áp dụng đ/l pitago ta đc:
IK^2 = HI^2 + HK^2
=>29^2 = 20^2 + HK^2
=>HK^2 = 29^2 - 20^2
=>HK^2 = 441
=> Hk = 21