Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài Làm
a) Xét tam giác AMN và tam giác BNM có:
\(\widehat{A}=\widehat{B}\)(=90o)
MN chung
\(\widehat{M}=\widehat{N}\)(vì tam giác AMN cân tại E)
=> tam giác AMN=tam giác BNM( ch-gn)
b) Ta có \(MA\perp EN\)
\(NB\perp EM\)
Mà MA cắt NB tại I => I là trực tâm của tam giác EMN
=> \(EH\perp MN\)
Vậy EH là đường trung tuyến của tam giác EMN
c) Ta có EA+AN=EN
hay 2 + 3 = EN
2 + 3 = 5 (cm)
VÌ tam giác EMN cân tại E nên : EM=EN=5 cm
Xét tam giác EMA có:
ME2 = MA2 + EA2
52 = MA2 + 22
MA2 = 52 -22
MA2 = 25-4
MA2 = 21
\(MA=\sqrt{21}\)
( MÌNH CHỈ BIẾT LÀM ĐẾN ĐÂY THÔI,MONG BẠN THÔNG CẢM MK HƠI KO ĐC THÔNG MINH! HÌNH BẠN TỰ VẼ NHÉ)
CHÚC BẠN HỌC TỐT!!!!!!!!^_^
tu ve hinh :
xet tamgiac AMN can tai A (gt) => goc AMN = goc ANM va AM = AN (dn)
AH vuong goc voi MN => goc AHN = goc AHM = 90o (dn)
=> tamgiac AMH = tamgiac ANH (ch - gn)
=> goc NAH = goc MAH (dn) ma AH nam giua AN va AM
=> AH la phan giac cua goc MAN
`Answer:`
a) Áp dụng định lý Pytago vào `\triangleAMN` vuông tại `A`, ta có:
`AN^2 =MN^2 -AM^2 <=>AN^2 =37^2 -12^2 <=>AN^2 =1369-144=1225<=>AN=35cm`
Ta có: `AM<AN<MN=>\hat{N}<\hat{M}<\hat{A}`
b) Xét `\triangleABI` và `\triangleNBI`, ta có:
`BI` chung
`AI=NI`
`\hat{AIB}=\hat{BIN}=90^o`
`=>\triangleABI=\triangleNBI`
c) Ta có:
`BI` vuông góc `AN`
`AM` vuông góc `AN`
\(\Rightarrow BI//AM\)
Mà `I` là trung điểm `AN`
`=>B` là trung điểm `MN`
`=>NB=1/2 MN`
Xét `\triangleACN`, ta có:
`NB` và `CI` là đường trung tuyến mà đều đi qua `D`
`=>D` là trọng tâm
`=>ND=2/3 NB`
Mà `NB=MB`
`=>ND=1/3 MN`
`=>MN=3ND`
a) Xét ΔANM vuông tại A và ΔBMN vuông tại B có
MN chung
\(\widehat{ANM}=\widehat{BMN}\)(ΔEMN cân tại E)
Do đó: ΔANM=ΔBMN(Cạnh huyền-góc nhọn)
b) Xét ΔEMN có
MA là đường cao ứng với cạnh EN(gt)
NB là đường cao ứng với cạnh EM(gt)
MA cắt NB tại I(Gt)
Do đó: I là trực tâm của ΔEMN(Tính chất ba đường cao của tam giác)
Suy ra: EI\(\perp\)MN tại H
Xét ΔEMH vuông tại H và ΔENH vuông tại H có
EM=EN(ΔEMN cân tại E)
EH chung
Do đó: ΔEMH=ΔENH(Cạnh huyền-cạnh góc vuông)
Suy ra: MH=NH(Hai cạnh tương ứng)
mà M,H,N thẳng hàng(gt)
nên H là trung điểm của MN
hay EH là đường trung tuyến của ΔMNE(đpcm)
a, Xét \(\Delta AMN\) và \(\Delta BMN\) có:
MN chung
góc ANM = góc BMN ( \(\Delta EMN\)cân)
góc MAN = góc NBM = 1v
b, Vì \(MA\perp EN\\ NB\perp EM\)
Mà \(MA\cap NB=\left\{I\right\}\)
Nên I là trực tâm của \(\Delta EMN\)
=> EH \(\perp MN\)
Do đó EH là đường trung tuyến của \(\Delta EMN\) ( T/c 3 đường cao của tam giác cân)
c, Ta có EN = EA+AN= 3 + 2 = 5(cm)
Mà \(\Delta EMN\)cân
=> EM = EN = 5cm
Áp dụng định lý Pytago, ta có:
\(ME^2=MA^2+AE^2\)
\(5^2=MA^2+2^2\)
\(MA^2=25-4\\ MA^2=21\)
MA = \(\sqrt{21}\)