K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

C S N I M O K F A B D H

haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm

a, Xét tam giác ABC vuông tại A và HA = HD

- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC

- Mà BC là đường kính O

=> \(\widehat{BAC}=90^o\)

=> \(\Delta ABC\perp A\)

Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )

- Có AH là đường cao

=> OH là đường trung tuyến \(\Delta OAD\)

=> H là trug điểm AD

=> HA = HD

b, MN // SC , SC tiếp tuyến của (O)

Xét tam giác OSC có : M là trung điểm của OC

                                     N là trung điểm của OS

=> MN là đường TB của \(\Delta OSC\)

=> MN // SC

Mà \(MN\perp OC\left(gt\right)\)

\(\Rightarrow OC\perp SC\)tại S

- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)

\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)

c, BH .  HC = AF . AK

Xét \(\Delta ABC\perp A\)có :

AH là đường cao 

=> AH2 = BH . HC

Xét đường tròn đường kính AH có F thuộc đường tròn

\(\Rightarrow\widehat{AFH}=90^o\)

\(\Rightarrow HF\perp AK\)tại F

Xét tam giác AHK vuông tại H , ta có : 

HF là đường cao 

=> AH2 = AF . AK

=> BH . HC = AF . AK ( = AH2 )

19 tháng 4 2020

GARENA FREE FIRE

a: BC=5,5cm

AH=2,64cm

22 tháng 7 2023

A B C M N

Ta có A và N cùng nhìn MC dưới góc 90 độ

=> AMNC là tứ giác nội tiếp

\(\Rightarrow\widehat{BAN}=\widehat{BCM}\) (góc nội tiếp cùng chắn cungMN)

Xét tg ABN và tg CBM có

\(\widehat{BAN}=\widehat{BCM}\) (cmt)

\(\widehat{ABC}\) chung

=> tg ABN đồng dạng tg CBM (g.g.g)

\(\Rightarrow\dfrac{AN}{CM}=\dfrac{AB}{BC}\)

Xét tg vuông ABC

\(\sin\widehat{C}=\dfrac{AB}{BC}\)

\(\Rightarrow\sin\widehat{C}=\dfrac{AN}{CM}\) (đpcm)

 

 

1. Cho ΔABC nội tiếp đường tròn (O). D, E, F lần lượt là trung điểm của BC, AC, AB. Kẻ DD' song song với OA, EE' song song với OB, FF' song song với OC. Chững minh DD', EE', FF' đồng quy2. Cho tam giác ABC nội tiếp đường tròn (O;R). Diểm M thuộc cung nhỏ BC. Gọi I, K, H theo thứ tự là hình chiếu vuông góc của M trên AB, AC, BC. Gọi P, Q lần lượt là trung điểm của AB, HKa) Chứng minh:ΔBMA đồng dạng ΔHMKb)...
Đọc tiếp

1. Cho ΔABC nội tiếp đường tròn (O). D, E, F lần lượt là trung điểm của BC, AC, AB. Kẻ DD' song song với OA, EE' song song với OB, FF' song song với OC. Chững minh DD', EE', FF' đồng quy

2. Cho tam giác ABC nội tiếp đường tròn (O;R). Diểm M thuộc cung nhỏ BC. Gọi I, K, H theo thứ tự là hình chiếu vuông góc của M trên AB, AC, BC. Gọi P, Q lần lượt là trung điểm của AB, HK

a) Chứng minh:ΔBMA đồng dạng ΔHMK

b) Chứng minh: ΔBMH đồng dạng ΔPMQ TỪ ĐÓ SUY RA MQPQ

c) Cho ΔABC đều. Xác định vị trí của điểm M trên cũng BC để MA+MB+MC đạt giá trị lớn nhất

3. Cho tam giác ABC nhọn và O là một điểm nằm trong tam giác. Các tia OA, BO, CO lần lược cắt BC, AC, AB tại M, N, P.

a) Chứng minh \(\frac{S_{BOC}}{S_{ABC}}=\frac{OM}{AM}\)

b) Chứng minh: \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\)≥9

0
11 tháng 12 2018

c.Cm cho: MO.ME=AM/2 .EO (hệ thức lượng) (1)

Cmtt: MO.MF=BM/2 .FO (2)

Từ (1) +(2) => EM.MO+MO.MF=AM/2.EO+BM/2.FO

=>(EM+MF).MO=(AM.EO+BM.OF)/2

=>EF.AO=(AM.EO+BM.OF)/2

=>(EF.AB)/2=(AM.EO+BM.OF)/2

=> EF.AB=AM.EO+BM.OF