Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C S N I M O K F A B D H
haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm
a, Xét tam giác ABC vuông tại A và HA = HD
- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC
- Mà BC là đường kính O
=> \(\widehat{BAC}=90^o\)
=> \(\Delta ABC\perp A\)
Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )
- Có AH là đường cao
=> OH là đường trung tuyến \(\Delta OAD\)
=> H là trug điểm AD
=> HA = HD
b, MN // SC , SC tiếp tuyến của (O)
Xét tam giác OSC có : M là trung điểm của OC
N là trung điểm của OS
=> MN là đường TB của \(\Delta OSC\)
=> MN // SC
Mà \(MN\perp OC\left(gt\right)\)
\(\Rightarrow OC\perp SC\)tại S
- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)
\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)
c, BH . HC = AF . AK
Xét \(\Delta ABC\perp A\)có :
AH là đường cao
=> AH2 = BH . HC
Xét đường tròn đường kính AH có F thuộc đường tròn
\(\Rightarrow\widehat{AFH}=90^o\)
\(\Rightarrow HF\perp AK\)tại F
Xét tam giác AHK vuông tại H , ta có :
HF là đường cao
=> AH2 = AF . AK
=> BH . HC = AF . AK ( = AH2 )
A B C M N
Ta có A và N cùng nhìn MC dưới góc 90 độ
=> AMNC là tứ giác nội tiếp
\(\Rightarrow\widehat{BAN}=\widehat{BCM}\) (góc nội tiếp cùng chắn cungMN)
Xét tg ABN và tg CBM có
\(\widehat{BAN}=\widehat{BCM}\) (cmt)
\(\widehat{ABC}\) chung
=> tg ABN đồng dạng tg CBM (g.g.g)
\(\Rightarrow\dfrac{AN}{CM}=\dfrac{AB}{BC}\)
Xét tg vuông ABC
\(\sin\widehat{C}=\dfrac{AB}{BC}\)
\(\Rightarrow\sin\widehat{C}=\dfrac{AN}{CM}\) (đpcm)
c.Cm cho: MO.ME=AM/2 .EO (hệ thức lượng) (1)
Cmtt: MO.MF=BM/2 .FO (2)
Từ (1) +(2) => EM.MO+MO.MF=AM/2.EO+BM/2.FO
=>(EM+MF).MO=(AM.EO+BM.OF)/2
=>EF.AO=(AM.EO+BM.OF)/2
=>(EF.AB)/2=(AM.EO+BM.OF)/2
=> EF.AB=AM.EO+BM.OF