K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HL
27 tháng 2 2015
Từ đỉnh A kẻ đường cao AH (H thuộc BC) (1)
Ta có : tam giác ABC cân tại A (gt) (2)
Từ(1) và(2)=> HB=HC(=1/2 BC) (3)
Lại có: BM=CN (gt) (4)
M nằm trên tia đối của tia BC, N nằm trên tia đối của tia CB => M,B,C.N thẳng hàng (5)
Từ (3)và (4)=>HB+BM=HC+CN (6)
Từ (5) và (6)=>AH vừa là đường cao, vừa là đường trung tuyến trong tam giác AMN
=> Tam giác AMN cân tại A (đpcm)
A B C M N I
a) Vì \(\Delta\)ABC đều nên \(\widehat{ABC}=\widehat{ACB}=\widehat{BAC}\) và AB = AC = BC.
Ta có: \(\widehat{ABC}\) + \(\widehat{NBM}\) = 180o (kề bù)
\(\widehat{ACB}\) + \(\widehat{ICN}\) = 180o (kề bù)
=> \(\widehat{NBM}\) = \(\widehat{ICN}\)
Lại có: BC + CN = BN
AC + IA = CI
mà BC = AC; CN = IA
=> BN = CI
Xét \(\Delta\)BMN và \(\Delta\)CNI có:
BN = CI (c/m trên)
\(\widehat{NBM}\) = \(\widehat{ICN}\) (c/m trên)
BM = CN (gt)
=> \(\Delta\)BMN = \(\Delta\)CNI (c.g.c)
b) Vì \(\Delta\)BMN = \(\Delta\)CNI (câu a)
=> MN = NI (2 cạnh t/ư)
Lại có: