Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng hệ thức lượng vào tam giác vuông ABC có AH^2=BH.CH=9.16=144 nên AH=12 , áp dụng định lý pytago vào 2 tam giác ABH ,AHC ta được AB=15,AC=20 ADHE là hình chữ nhật vi có 3 góc=90độ áp dụng hệ thức lượng ta tính được AD và DH
Giải :
Ta có hình vẽ :
A B C H D E
a ) Ta có :
+ ) \(AH^2=BH.CH=9.16=144cm^2\)
\(\Rightarrow AH=12cm\)
+ ) \(AB^2=BH.BC=9.25=225cm^2\)
\(\Rightarrow AB=15cm\)
+ ) \(AC^2=CH.BC=16.25=400cm^2\)
\(\Rightarrow AC=20cm\)
b ) Chứng minh được tứ giác ADHE là hình chữ nhật
c ) Ta có :
+ ) \(HD.AB=HA.HB\)
\(\Rightarrow HD=\frac{HA.HB}{AB}=\frac{12.9}{15}=7,2cm\)
+ ) \(HE.AC=HA.HC\)
\(\Rightarrow HE=\frac{HA.HC}{AC}=\frac{12.16}{20}=9,6cm\)
\(\Rightarrow P\left(ADHE\right)=\left(7,2+9,6\right).2=33,6\left(cm\right)\)
\(\Rightarrow S\left(ADHE\right)=7,2\times9,6=69,12\left(cm^2\right)\)
a: ΔAHB vuông tại H có HP vuông góc AB
nên AP*AB=AH^2
ΔAHC vuông tại H có HQ vuông góc AC
nên AQ*AC=AH^2
=>AP*AB=AQ*AC
góc APH+góc AQH=180 độ
=>APHQ nội tiếp
Xét ΔMHP và ΔMQH có
góc MHP=góc MQH(=góc PAH)
góc M chung
=>ΔMHP đồng dạg với ΔMQH
=>MH/MQ=MP/MH
=>MH^2=MP*MQ
APHQ nội tiếp
=>góc APQ=góc AHQ=góc C
=>QPB+góc QCB=180 độ
=>PQCB nội tiếp
=>góc QPB+góc QCB=180 độ
=>góc MPB=góc MCQ
Xét ΔMPB và ΔMCQ có
góc MPB=góc MCQ
góc M chung
=>ΔMPB đồng dạng với ΔMCQ
=>MP/MC=MB/MQ
=>MP*MQ=MB*MC=MH^2
b: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC
=>góc xAC=góc AQP
=>PQ//Ax
=>AO vuông góc PQ
Tứ giác ABMC nội tiếp \(\Rightarrow\widehat{ABM}+\widehat{ACM}=180^0\)
Mà \(\widehat{ACM}+\widehat{MCE}=180^0\Rightarrow\widehat{ABM}=\widehat{MCE}\)
D và E cùng nhìn CM dưới 1 góc vuông \(\Rightarrow CDME\) nội tiếp
\(\Rightarrow\widehat{MCE}=\widehat{MDE}\) (cùng chắn ME) \(\Rightarrow\widehat{ABM}=\widehat{MDE}\)
Mặt khác D và F cùng nhìn BM dưới 1 góc vuông \(\Rightarrow BFDM\) nội tiếp
\(\Rightarrow\widehat{ABM}+\widehat{FDM}=180^0\)
\(\Rightarrow\widehat{MDE}+\widehat{FDM}=180^0\Rightarrow\) D, E, F thẳng hàng