Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. trong tam giác đều đường cao cũng là đường trung tuyến nen:
M;N lần lượt là trung điểm của ac và ab
+
=> AM LÀ dường trung bình của tam giác abc
=>AM//BC hay MNBC là hình thang 1
Do AB là tam giác đều nên BN=CM 2
TỪ 1 và 2 suy ra MNBC LÀ HÌNH THANG CÂN ( đpcm)
b.
do tam giác ABC dều nên AB=BC=AC=24:3=8 dm
=> MN=4 ; MB=4; NC=4
CHU VI HÌNH THANG LÀ:
4+4+4+8=20(dm)
a,Xét tam giác ABN và tam giác ACM có:
góc A chung
AB=AC(tam giác ABC đều)
góc ANB=góc AMC(=90*)
=>tam giác ABN =tam giác ACM(g-c-g)
=>AN=AM(2 cạnh tương ứng)
=>tam giác ANM cân tại A
=>góc ANM=\(\frac{180-gócA}{2}\left(1\right)\)
Có:tam giác ABC đều
=>góc ACB=\(\frac{180-gócA}{2}\left(2\right)\)
Từ (1) và (2)=>góc ANM =góc ACB(=\(\frac{180-gócA}{2}\))
mà hai góc này ở vị trí đồng vị
=>MN//BC
=>NMBC là hình thang
mà BN=CM(tam giác ABN=tam giác ACM)
=>NMBC là hình thang cân
A B C H K 60
a) Xét \(\Delta ABC\)đều có H là chân đường vuông góc hạ tự B xuống cạnh đáy AC
\(\Rightarrow\)H cũng là chân đường trung tuyến hạ từ B xuống đáy AC
\(\Rightarrow AH=HC\)
Tương tự \(\Rightarrow AK=KB\)
\(\Rightarrow\)HK là đường trung bính \(\Delta ABC\)
\(\Rightarrow HK//BC\)\(\Rightarrow\)HKCB là hình thang ( 1 )
Lại có \(\Delta ABC\)đều
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(=60^o\right)\)( 2 )
Từ (1) và (2) \(\Rightarrow\)BCHK là hình thang cân
b) Xét \(\Delta ABC\)đều \(\Rightarrow AB=AC=BC=\frac{24}{3}=8\left(cm\right)\)
Ta có \(AK=\frac{1}{2}AB;AH=\frac{1}{2}AC\)
Mà AB = AC \(\Rightarrow AK=AH\)
Lại có \(\widehat{KAH}=60^o\)
\(\Rightarrow\Delta AHK\)đều
Mà \(AK=\frac{1}{2}AB\Rightarrow AK=\frac{1}{2}\times8=4\left(cm\right)\)
\(\Rightarrow AK=AH=HK=4\left(cm\right)\)
\(C_{BCHK}=KH+HC+BC+BK\)
\(\Leftrightarrow C_{BCHK}=KH+AH+BC+AK\)
\(\Leftrightarrow C_{BCHK}=4+4+8+4\)
\(\Leftrightarrow C_{BCHK}=20\left(cm\right)\)
Vậy ...
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc A chung
Do đó: ΔABH=ΔACK
Suy ra: AH=AK
Xét ΔABC có AH/AC=AK/AB
nên HK//BC
=>BKHC là hình thang
mà BH=CK
nên BKHC là hình thang cân
b: Xét ΔABC đều có AB=AC=BC
nên AB=AC=BC=24/3=8cm
Vì ΔABC đều
mà BH là đường cao
nên BH là phân giác của góc ABC và H là trung điểm của AC
=>HC=AC/2=4cm
Xét ΔKHB có góc KHB=góc KBH
nên ΔKHB cân tại K
=>KH=KB=CH=4cm
\(C=4+4+4+8=20\left(cm\right)\)
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a) Xét ∆ vuông ANC và ∆ vuông AMB ta có :
AB = AC ( ∆ABC đều)
A chung
=> ∆ANC = ∆AMB (ch-gn)
=> AN = AM
=> ∆AMN cân tại A
=> ANM = \(\frac{180°-BAC}{2}\)= \(\frac{180°-60°}{2}\)=\(60°\)
Mà ∆ABC đều
=> ABC = 60°
=> ABC = ANM = 60°
Mà 2 góc này ở vị trí đồng vị
=> NM//BC
=> NMCB là hình thang
Mà ∆ABC đều
=> BAC = ABC = ACB
=> NMCB là hình thang cân
b) Vì chu vi ∆ABC = 24dm
=> AB = AC = BC = 8cm
Vì ∆AMN cân tại A (cmt)
=> ∆AMN đều
=> MN = AM = AN
Mà BN là đường cao ∆ đều ABC
=> BN đồng thời là trung tuyến ∆ABC
=> AN = \(\frac{1}{2}Ac\)
=> MN = AN = \(\frac{1}{2}AC\:=\:\frac{8}{2}=4=NC\)
Vì BMNC là hình thang cân
=> BM = NC = AN = 4dm
Chu vi hình thang BMNC là :
4 + 4 + 4 + 8 = 20dm