K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

A B C H

a) Áp dụng định lí Py-ta-go vào tam giác vuông ABH có :

AB2 = AH2 + BH2

hay 42 = AH2 + 22

AH2 = 42 - 22 = 12

\(\Rightarrow AH=\sqrt{12}\)

b) vì \(\Delta ABC\)cân tại A nên AB = AC = 4cm

Áp dụng định lí Py-ta-go vào tam giác vuông AHC có :

AC2 = AH2 + BH2

hay 42 = 12 + HC2

\(\Rightarrow\)HC2 = 16 - 12 = 4 = 22 \(\Rightarrow\)HC = 2

Mà BH + HC = BC = 2cm + 2cm = 4cm

Vậy chu vi tam giác ABC là : 4cm + 4cm + 4cm = 12cm

23 tháng 4 2017

Hình tự vẽ

Xét \(\Delta MBH\)và \(\Delta NCH\)

\(\widehat{BMH}=\widehat{CNH}=90^o\)

\(BH=CH\left(cma\right)\)

\(\widehat{NBH}=\widehat{NQH}\)(Tam giác ABC cân tại A

\(\Rightarrow\Delta MBH=\Delta NCH\left(ch-gn\right)\)

\(MH=NH\left(2ctu\right)_{\left(1\right)}\)

Xét \(\Delta BQH\)và \(\Delta CNH\)

\(\widehat{Q}=\widehat{CNH}=90^o\)

\(BH=CH\left(cma\right)\)

\(\widehat{BHQ}=\widehat{NHC}\)(đối đỉnh)

\(\Rightarrow\Delta BQH=\Delta CNH\left(ch-gn\right)\)

\(\Rightarrow QH=NH\left(2ctu\right)_{\left(2\right)}\)

Từ \(\left(1\right),\left(2\right)\Rightarrow MH=QH\)

=> \(\Delta HQM\)cân tại H

26 tháng 5 2021

  B A C H

a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow50^2=30^2+40^2\)* đúng *

Vậy tam giác ABC vuông tại A

b, Ta có : \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.40.30=600\)cm2

c, biết mỗi cách tam giác đồng dang :))

Xét tam giác AHC và tam giác BAC ta có : 

^AHC = ^BAC = 900

^C _ chung 

Vậy tam giác AHC ~ tam giác BAC ( g.g )

\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\Rightarrow AH=\frac{AB.AC}{BC}=\frac{1200}{50}=24\)cm 

19 tháng 2 2020

Hình vẽ: 

A B C H 5cm 9cm 4cm

Xét \(\Delta ACH\left(\widehat{H}=90^0\right)\)có: 

\(AC^2=AH^2+HC^2\)( định lý py-ta-go )

\(\Rightarrow5^2=4^2+HC^2\)

\(\Rightarrow HC^2=5^2-4^2\)

\(\Rightarrow HC^2=25-16\)

\(\Rightarrow HC^2=9\)

\(\Rightarrow HC=\sqrt{9}\)

\(\Rightarrow HC=3cm\)

Ta có: \(BH+HC=9cm\)

mà \(HC=3cm\left(cmt\right)\)

\(\Rightarrow BH=9-3=6cm\)

Xét \(\Delta AHB\left(\widehat{H}=90^0\right)\)có:
\(AB^2=AH^2+BH^2\)( định lý py-ta-go )

\(\Rightarrow AB^2=4^2+6^2\)

\(\Rightarrow AB^2=16+36\)

\(\Rightarrow AB^2=52\)

\(\Rightarrow AB=\sqrt{52}cm\)

Vậy độ dài cạnh AB là \(\sqrt{52}cm\)