K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

a) Xét tam giác DEH và tam giác DFH ta có:

        DE = DF ( tam giác DEF cân tại D )

        DEH = DFH ( tam giác DEF cân tại D )

        EH = EF ( H là trung điểm của EF )

=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)

=> DHE=DHF(hai góc tương ứng)

Mà DHE+DHF=180 độ  =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )

 b) Xét tam giác MEH và tam giac NFH ta có:

          EH=FH(theo a)

          MEH=NFH(theo a)

  => tam giác MEH = tam giác NFH ( ch-gn)

  => HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )

c) Ta có : +) DM+ME=DE =>DM=DE-ME

                +) DN+NF=DF => DN=DF-NF

Mà DE=DF(theo a)   ;     ME=NF( theo b tam giác MEH=tam giác NFH)

=>DM=DN => tam giác DMN cân tại D 

Xét tam giac cân DMN ta có:

     DMN=DNM=180-MDN/2      (*)

Xét tam giác cân DEF ta có:

     DEF=DFE =180-MDN/2       (*)

Từ (*) và (*) Suy ra góc DMN = góc DEF

Mà DMN và DEF ở vị trí đồng vị

=> MN//EF (dpcm)

d) Xét tam giác DEK và tam giác DFK ta có:

        DK là cạnh chung

        DE=DF(theo a)

    => tam giác DEK= tam giác DFK(ch-cgv)

   =>DKE=DKF(2 góc tương ứng)

   =>DK là tia phân giác của góc EDF       (1)

Theo a tam giac DEH= tam giac DFH(c.g.c)

   =>EDH=FDH(2 góc tương ứng)

   =>DH là tia phân giác của góc EDF        (2)

Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)

24 tháng 7 2024

ED=EF(tôi cần lý do để bằng nhau)

 

a: Xet ΔDEN và ΔFEN có

ED=EF
góc DEN=góc FEN

EN chung

=>ΔDEN=ΔFEN

=>ND=NF

=>ΔNDF cân tại N

b: ΔDEN=ΔNFE

=>góc NFE=90 độ

=>NF vuông góc EF

c: Xét ΔDEP có

DF là trung tuyến

DF=EP/2

=>ΔDEP vuông tại D

a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có

EC chung

\(\widehat{DEC}=\widehat{HEC}\)

Do đó; ΔEDC=ΔEHC

b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có 

CD=CH

\(\widehat{DCK}=\widehat{HCF}\)

Do đó; ΔDCK=ΔHCF

Suy ra: CK=CF

15 tháng 5 2022

a, Xét Δ DCE và Δ HCE, có :

EC là cạnh chung

\(\widehat{CDE}=\widehat{CHE}=90^o\)

\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))

=> Δ DCE = Δ HCE (g.c.g)

=> DC = HC

b, Xét Δ DCK và Δ HCF, có :

DC = HC (cmt)

\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)

=> Δ DCK = Δ HCF ( ch - cgn)

=> CK = CF

=> Δ CKF cân tại C

31 tháng 12 2017

Câu 1: giống bài vừa nãy t làm cho bạn rồi!

Câu 2:

vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)

Câu 3 :

sửa đề chút nha : EF là tia phân giác góc DEH

ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)

mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)

=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có

EC chung

góc DEC=góc HEC

=>ΔEDC=ΔEHC

b: Xét ΔCDK vuông tại D và ΔCHF vuông tại H có

CD=CH

góc DCK=góc HCF

=>ΔCDK=ΔCHF

=>CK=CF

=>ΔCKF cân tại C

28 tháng 3 2020

D E F M N H

lưu ý hình ảnh chỉ mang t/c minh họa  ; vui lòng k vẽ theo

xét \(\Delta DHM\)VÀ \(\Delta DHN\)

DH-CẠNH CHUNG

\(\widehat{HDM}=\widehat{HDN}\left(gt\right)\)

\(\widehat{DMH}=\widehat{DNH}=90^o\left(gt\right)\)

=> \(\Delta DHM=\Delta DHN\)

=>HM = HN.

b) xét tam giác DEF cân tại D

=> \(\widehat{DEF}=\widehat{DFE}\)(T/C TAM GIÁC CÂN )

=>\(\widehat{MEH}=\widehat{NFH}\)

XÉT \(\Delta MEH\)VÀ \(\Delta NFH\)

\(\widehat{EMH}=\widehat{FNH}=90^o\left(gt\right)\)

\(\widehat{MEH}=\widehat{NFH}\left(cmt\right)\)

\(HM=HN\left(cmt\right)\)

=> \(\Delta MEH=\Delta NFH\)