K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

D E F I B H K

a/ Xét \(\Delta EBD;\Delta EIB\) có :

\(\left\{{}\begin{matrix}\widehat{EDF}=\widehat{BIE}=90^0\\\widehat{DEF}=\widehat{BEI}\\EBchung\end{matrix}\right.\)

\(\Leftrightarrow\Delta EDB=\Delta EIB\left(ch-gn\right)\)

b/ \(\Delta EDB=\Delta EIB\left(cmt\right)\)

\(\Leftrightarrow DB=BI\)

Xét \(\Delta DBH;\Delta IBF\) có :

\(\left\{{}\begin{matrix}\widehat{BDH}=\widehat{BIF}=90^0\\DB=BI\\\widehat{DBH}=\widehat{IBF}\end{matrix}\right.\)

\(\)\(\Leftrightarrow\Delta DBH=\Delta IBF\left(g-c-g\right)\)

\(\Leftrightarrow BH=BF\)

c/ \(\Delta EDB=\Delta EIB\left(cmt\right)\)

\(\Leftrightarrow ED=EI\left(1\right)\)

\(\Delta DBH=\Delta IBF\left(cmt\right)\)

\(\Leftrightarrow DH=IF\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow ED+EH=IE+IF\)

\(\Leftrightarrow EH=EF\)

Xét \(\Delta EHK;\Delta EFK\) có :

\(\left\{{}\begin{matrix}DH=DF\\EKchung\\HK=HF\end{matrix}\right.\)

\(\Leftrightarrow\Delta EHK=\Delta EFK\left(c-c-c\right)\)

\(\Leftrightarrow\widehat{HEK}=\widehat{FEK}\)

Mà EK nằm giữa EH; EF

\(\Leftrightarrow EK\) là tia phân giác của \(\widehat{HEF}\left(3\right)\)

\(\Delta EBD=\Delta EBI\left(cmt\right)\)

\(\Leftrightarrow\widehat{BED}=\widehat{BEI}\)

Mà EB nằm giữa ED; EI

\(\Leftrightarrow EB\) là tia phân giác của \(\widehat{DEI}\left(4\right)\)

Từ \(\left(3\right)+\left(4\right)\Leftrightarrow E;B;K\) thằng hàng

d/ \(ED=IE\left(cmt\right)\)

\(\Leftrightarrow\Delta EID\) cân tại E

\(\Leftrightarrow\widehat{DEI}=180^0-2.\widehat{EDI}\left(5\right)\)

\(EH=EF\)

\(\Leftrightarrow\Delta EHF\) cân tại E

\(\Leftrightarrow\widehat{HEF}=180^0-2.\widehat{EHF}\left(6\right)\)

Từ \(\left(5\right)+\left(6\right)\Leftrightarrow\widehat{EDI}=\widehat{EHF}\)

Mà đây là 2 góc so le trong

\(\Leftrightarrow DI\backslash\backslash HF\left(đpcm\right)\)

31 tháng 1 2022

a,xét tam giác  vuông EDB(góc EDB=90 độ)và tam giác vuông EIB(góc EIB=90 độ)có:

   EB chung 

   góc DEB =góc BEI(gt) 

=> tam giác vuôngEDB= tam giác vuông IBF(góc FIB=90 độ)có:

 góc DBH=góc IBF(đđ)  

 DB=BI(cmt)

=> tam giác vuông DBH= tam giác vuông IBF(góc nhọn kề cạnh góc vuông)

=>HB=BF(2 cah t/ứng)

c) có tam giác DBH vuông tại D(gt) 

=>DB<HB(cah đối diện với góc lớn nhất)

mà BH=BF =>DB<BF

d,từ câu a=>ED=EI

có ED=EI , DH=IF=>ED+DH=EI+IF=EH=EF

=> tam giác EHF cân tại E(đl tam giác cân)

dựa vào trường hợp đặc biệt của tam giác cân: 

 có EB là tia phân giác=>EB c~  là đng trung tuyến (1)

mà K là trung điểm của HF=>K thuộc trung tuyến EB(2)

=>từ 1 và 2 ta có E,B,K đều thuộc trung tuyến EB

hay E,B,K thẳng hàng

11 tháng 3 2016

a) Xét 2 tam giác vuông EDB và EIB có

EB chung

Góc EDB = Góc EIB = 90độ

Góc DEB = Góc IEB (vì EB là phân giác của Góc E) 

=> tam giác EDB = tam giác EIB (ch-gn)

b) Nối H với F

Ta có EI = ED (vì tam giác EDB = tam giác EIB) => EF - EI = EH - ED

                                                                              => DH = IF

Xét 2 tam giác vuông FHD và HFI có: 

HF chung

DH = IF (cmt)

=> tam giác FHD = tam giác HFI (ch-cgv)

9 tháng 6 2022

a, Xét △EIB và ΔEDB có:

EB chung

Góc EDB = Góc EIB (=90 độ)

Góc DEB = Góc IEB (pg EB)

⇒△EIB = ΔEDB (ch-gn)

b, Xét △DHB và △IFB có:

góc HDB = góc FIB (=90 độ)

góc HBD = góc FBI (đối đỉnh)

BD = IB (△EIB = ΔEDB)

⇒ △DHB = △IFB (g.c.g)

c, Ta có HB = BF ( △DHB = △IFB)

mà DB < HB (cgv < c.huyền)

⇒ DB < BF

d, Ta có ED = EI (△EIB = ΔEDB)

DH = IF (△DHB = △IFB)

⇒ ED + DH = EI + IF

⇒ EH = EF

Xét △EHK và △EFK có: 

EH = EF (cmt)

EK chung

HK = KF (K là trung điểm HF)

⇒△EHK = △EFK (c.c.c)

⇒ Góc HEK = Góc FEK ( góc t.ứng)

⇒ EK là phân giác góc HEF

mà EB là phân giác góc HEF

⇒ E, B, K thẳng hàng

a,xét tam giác  vuông EDB(góc EDB=90 độ)và tam giác vuông EIB(góc EIB=90 độ)có:

   EB chung 

   góc DEB =góc BEI(gt) 

=> tam giác vuôngEDB= tam giác vuông IBF(góc FIB=90 độ)có:

 góc DBH=góc IBF(đđ)  

 DB=BI(cmt)

=> tam giác vuông DBH= tam giác vuông IBF(góc nhọn kề cạnh góc vuông)

=>HB=BF(2 cah t/ứng)

c) có tam giác DBH vuông tại D(gt) 

=>DB<HB(cah đối diện với góc lớn nhất)

mà BH=BF =>DB<BF

d,từ câu a=>ED=EI

có ED=EI , DH=IF=>ED+DH=EI+IF=EH=EF

=> tam giác EHF cân tại E(đl tam giác cân)

dựa vào trường hợp đặc biệt của tam giác cân: 

 có EB là tia phân giác=>EB c~  là đng trung tuyến (1)

mà K là trung điểm của HF=>K thuộc trung tuyến EB(2)

=>từ 1 và 2 ta có E,B,K đều thuộc trung tuyến EB

hay E,B,K thẳng hàng

------------------ // Tokyo Ghoul //----------------------------------

16 tháng 2 2020

D E F B I H K

a, xét tam giác BIE và tam giác BDE có : BE chung

góc BDE = góc BIE = 90 

góc BED = góc IEB do EB là phân giác của góc DEF (gt)

=> tam giác BIE = tam giác BDE (Ch-gn)

b, tam giác BIE = tam giác BDE (Câu a)

=> BI = BD (đn)

xét tam giác FBI và tam giác HBD có : góc FBI = góc HBD (đối đỉnh)

góc FIB = góc BDH = 90

=> tam giác FBI = tam giác HBD (2cgv)

=> HB = BF (đn)

c, BD = BI (câu b)

BI < BF do tam giác BFI vuông tại I 

=> BD < DF 

mk đưa lick cho bn đc k ?

15 tháng 3 2022

no

11 tháng 5 2016

D E F B I H K

a,xét \(\Delta\)vuông EDB(góc EDB=90 độ)và\(\Delta\)vuông EIB(góc EIB=90 độ)có:

    EB chung

   góc DEB =góc BEI(gt)

=>\(\Delta\)vuôngEDB=\(\Delta\)vuông EIB(cạnh huyền-góc nhọn)    

b,=>DB=BI(2 cah t/ứng)

xét \(\Delta\)vuôngDBH(góc HDB=90 độ)và\(\Delta\)vuông IBF(góc FIB=90 độ)có:

   góc DBH=góc IBF(đđ)

   DB=BI(cmt)

=>\(\Delta\)vuông DBH=\(\Delta\)vuông IBF(góc nhọn kề cạnh góc vuông)

=>HB=BF(2 cah t/ứng)

c,có \(\Delta\)DBH vuông tại D(gt)                

=>DB<HB(cah đối diện với góc lớn nhất)

mà BH=BF =>DB<BF

d,từ câu a=>ED=EI

có ED=EI , DH=IF=>ED+DH=EI+IF=EH=EF

=>\(\Delta\)EHF cân tại E(đl tam giác cân)

dựa vào trường hợp đặc biệt của tam giác cân:

 có EB là tia phân giác=>EB c~  là đng trung tuyến (1)

mà K là trung điểm của HF=>K thuộc trung tuyến EB(2)

=>từ 1 và 2 ta có E,B,K đều thuộc trung tuyến EB

hay E,B,K thẳng hàng

                               

 

 

 

11 tháng 3 2017

GT, KL, hình vẽ (tự làm)

a) Ta có: Góc DEB = góc FEB ( EB là tia phân giác)

Hay góc DEB = góc IEB

Xét \(\Delta EDB\) vuông tại D và \(\Delta EIB\) vuông tại I có:

EB chung

góc DEB = góc IEb (cmt)

\(\Rightarrow\Delta EDB=\Delta EIB\) (cạnh huyền- góc nhọn)

\(\Rightarrow DB=IB\) ( 2 cạnh t/ứ)

b) Xét \(\Delta DBH\) vuông tại D và \(\Delta IBF\) vuông tại I có:

DB = IB (cmt)

góc DBH = góc IBF (2 góc đối đỉnh)

\(\Rightarrow\Delta DBH=\Delta IBF\left(c.h-g.n\right)\)

\(\Rightarrow BH=BF\)( 2 cạnh tương ứng)

c) Tự làm

d)c) t/g BDH = t/g BIF (câu b)
=> DH = IF (2 cạnh tương ứng)
Mà ED = EI (do t/g EDB = t/g EIB
=> DH + ED = IF + EI
=> EH = EF
t/g EHK = t/g EFK (c.c.c)
=> HEK = FEK (2 góc tương ứng)
=> EK là phân giác HEF (1)
Có: DEB = IEB (do t/g EDB = t/g EIB
=> EB là phân giác DEI (2)
Từ (1) và (2) => E,B,K thẳng hàng (đpcm)

19 tháng 2 2016

 a) Xét tam giác EDB và tam giác EIB 
Có : + góc EDB = góc EIB = 90độ (gt) 
+ EB chung 
+ góc DEB = góc IEB (Do BE là phân giác góc DEF - gt) 
=> tam giác EDB = tam giác EIB (cạnh huyền và góc nhọn). 
=> BD = BI (cặp cạnh tương ứng) 

b) Xét tam giác DBH và tam giác IBF 
Có : góc BDH = góc BIF = 90độ (gt) 
+ BD = BI (chứng minh trên) 
+ góc DBH = góc IBF (đối đỉnh) 
=> tam giác DBH = tam giác IBF (g.c.g) 
=> BH = BF (cặp cạnh tương ứng). 

c) Xét tam giác BIF có góc BIF = 90độ (gt) => BF là cạnh huyền (cạnh đối diện với góc vuông trong tam giác vuông là cạnh huyền và trong tam giác vuông thì cạnh huyền là cạnh lớn nhất) => BI < BF . Mà BD = BI (chứng minh trên) => DB < BF 

d) Ta có khi 3 điểm cùng nằm trên 1 đường thẳng thì chúng thẳng hàng => Để chứng minh 3 điểm thẳng hàng ta có thể chứng minh chúng cùng nằm trên 1 đường nào đó. 
Xét tam giác HEF có HI và FD (Do HI ⊥ EF và DF ⊥ HE) mà HI giao DF tại B => B là trưc tâm tam giác HEF 
=> HE kéo dài sẽ vuông góc với HF => HE thuộc đường cao hạ từ E của tam giác HEF(1). 
Do K là trung điểm HF => EK là trung tuyến. Mặt khác ta có tam giác EHF là tam giác cân tại E (bạn hãy tự chứng minh HE = HF để suy ra điều này). 
=> EK cũng là đường cao (2) 
Từ (1) và (2) => EB và EK trùng nhau. => EB và EK cùng thuộc đường cao hạ từ E 
=> E;B và K thẳng hàng 
Lưu ý : Trong tam giác cân tại đỉnh nào, thì các đường: đuờng cao; trung tuyến, phân giác, trung trực hạ từ đỉnh đó là 1 - nếu chưa biết thì bạn tự chứng minh - không hề khó

3 tháng 5 2015

cac ban oi giup minh voi !!!!!!!! Kg cần vẽ hình đâu!!!!!!!!!!! Nếu có vẽ thêm thì chỉ cần nêu cách vẽ thôi!!!!!!!!!!!!! Thanhkssss................