K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

Áp dụng PTG: \(EF=\sqrt{DE^2+DF^2}=13\left(cm\right)\)

Vì DM là trung tuyến ứng cạnh huyền EF nên \(DM=\dfrac{1}{2}EF=\dfrac{13}{2}\left(cm\right)\)

23 tháng 12 2021

a/ Xét tứ giác DPMQ có

EDF=MQD=ˆMPD=90oEDF^=MQD^=MPD^=90o

=> Tứ giác DPMQ là hcn

b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF

c/ Có I đx M qua DE

=> DE là đường t/trực của IM

=> DI = DM (1)

=> t/g DIM cân tại D có DE là đường trung trực

=> DE đồng thời là đường pg

=> ˆIDE=ˆEDMIDE^=EDM^ (2) 

CMTT : DM = DK (3) ; ˆKDF=ˆFDMKDF^=FDM^ (4)

Từ (2) ; (4)

=> ∠IDE+EDF+KDF=IDK=180oIDE^+EDF^+KDF^=IDK^=180o

=> I,D,K thẳng hàng 

Từ (1) ; (3)=> ID = DK

Do đó D là trđ IK

=> I đx K qua D

11 tháng 12 2023

a: ΔDEF vuông tại D

=>\(DE^2+DF^2+EF^2\)

=>\(EF^2=9^2+12^2=225\)

=>\(EF=\sqrt{225}=15\left(cm\right)\)

Ta có; ΔDEF vuông tại D

mà DM là đường trung tuyến

nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)

b: Xét tứ giác DNMK có

\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)

=>DNMK là hình chữ nhật

c: Xét ΔDEF có MN//DF

nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)

=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)

mà \(MN=\dfrac{1}{2}MH\)

nên MH=DF

Ta có: MN//DF

N\(\in\)MH

Do đó: MH//DF

Xét tứ giác DHMF có

MH//DF

MH=DF

Do đó: DHMF là hình bình hành

=>DM cắt HF tại trung điểm của mỗi đường

mà O là trung điểm của DM

nên O là trung điểm của HF

=>H,O,F thẳng hàng

27 tháng 12 2021

\(a,\) Áp dụng Pytago, ta có \(EF=\sqrt{DE^2+DF^2}=20\left(cm\right)\)

Vì DN là trung tuyến ứng với cạnh huyền EF nên \(DN=\dfrac{1}{2}EF=10\left(cm\right)\)

23 tháng 10 2021

Vì DM là trung tuyến ứng với cạnh huyền EF nên \(DM=\dfrac{1}{2}EF=\dfrac{5}{2}=2,5\left(cm\right)\)

23 tháng 10 2021

mik cam on bn

a: \(DE=\sqrt{15^2-12^2}=9\left(cm\right)\)

\(S_{DEF}=\dfrac{1}{2}\cdot9\cdot12=6\cdot9=54\left(cm^2\right)\)

b: Xét tứ giác DMHN có

góc DMH=góc DNH=góc MDN=90 độ

nên DMHN là hình chữ nhật

c: Xét tứ giác DHMK có

DK//MH

DK=MH

Do đó: DHMK là hình bình hành

14 tháng 11 2021

a) Xét tam giác DEF vuông tại D 

=> DE2+DF2= EF2 (định lí Py-ta-go)

=> 122+162= EF2 

=> 144 + 256 = EF2

EF2 = 400 = 202

=> EF = 20cm

Xét tam giác DEF vuông tại D có DI là trung tuyến ( I là trung điểm EF)

=> DI = 1/2 EF = 20/2 = 10cm

Vậy DI = 10cm

b) Vì tam giác DEF vuông tại D (gt)

=> ED ⊥ DF 

mà ED ⊥ IK (gt)

=> IK // DF 

Xét tam giác DEF vuông tại D có : I là trung điểm EF (gt)

                                                       IK // DF (cmt)

=> K là trung điểm ED

=> EK = KD = 1/2 ED

mà ED = 12cm

=> KD = 6cm 

Xét tam giác IKD vuông tại K có

KD2 + KI2 = DI2

=> 62 + KI2 = 102

KI2 = 102- 62 = 100-36=64 = 82

=> KI = 8cm

Vậy KI = 8cm

14 tháng 11 2019

a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)

và \(EF^2=5^2=25\left(cm\right)\)

\(\Rightarrow DE^2+DF^2=EF^2\)

\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông

b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)

\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)

c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)

Lại có IK vuông góc DF

\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF

\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)