Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDEF vuông tại D có DH là đường cao
nên DH^2=EH*FH
=>DH=4,8cm
Xét ΔDEF vuông tại D có DH là đường cao
nên ED^2=EH*EF và FD^2=FH*FE
=>ED^2=36 và FD=64
=>ED=6cm; FD=8cm
b: DK=DF/2=4cm
Xét ΔDKE vuông tại D có tan DEK=DK/DE=4/6=2/3
nên \(\widehat{DEK}\simeq34^0\)
c: ΔDEF vuông tại D có DH là đường cao
nên EH*EF=ED^2
ΔDKE vuông tại D có DM là đường cao
nên EM*EK=ED^2
=>EH*EF=EM*EK
=>EH/EK=EM/EF
Xét ΔEHM và ΔEKF có
EH/EK=EM/EF
góc HEM chung
Do đó: ΔEHM đồng dạng với ΔEKF
=>góc EHM=góc EKF
=>góc FHM+góc FKM=180 độ
=>FKMH nội tiếp
=>góc MKH=góc MFH
\(a,\) Áp dụng Pytago \(EF=\sqrt{DE^2+DF^2}=25\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\\DH^2=FH\cdot EH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EH=\dfrac{DE^2}{EF}=9\left(cm\right)\\FH=\dfrac{DF^2}{EF}=16\left(cm\right)\\DH=\sqrt{9\cdot16}=12\left(cm\right)\end{matrix}\right.\)
\(b,\sin\widehat{E}=\cos\widehat{F}=\dfrac{DF}{EF}=\dfrac{4}{5}\approx\left\{{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Rightarrow\widehat{E}\approx53^0;\widehat{F}\approx37^0\)
a) \(EF=\sqrt{3^2+4^2}=5\)(cm)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2,4\left(cm\right)\)
b) \(EF=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)
c) \(EF=\sqrt{12^2+5^2}=13\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)
http://d3.violet.vn/uploads/previews/291/844162/preview.swf
a) đương nhiên ( áp dụng hệ thức lượng trong tam giác vuông )
b) \(\text{EF}=\sqrt{DE^2+DF^2}=\sqrt{12^2+16^2}=20\) (cm )
ta có DE^2 = EH . EF => EH = DE^2/ EF = 12^2 / 20 = 7.2 ( cm )
DH = DE.DF / EF = 9,6 ( cm )