Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Thêm điều kiện góc C = góc F để tam giác ABC = tam giác DEF (g-c-g)
-Thêm điều kiện BC = EF để tam giác ABC = tam giác DEF ( c.huyền - c.g.vuông )
- Thêm điều kiện AB = DE để tam giác ABC = tam giác DEF ( c-g-c)
2. Xét tam giác ABH và tam giác ACK có :
AB = AC (tam giác ABC cân tại A)
Góc A chung
góc AKC = góc AHB ( = 90 độ )
=>Tam giác AKC và tam giác ABH (c.huyền-g.nhọn)
=>AH = AK ( cặp cạnh t/ứng )
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng
A D B H C E F G 1 2 1 2
a) Vì G là giao điểm của 2 đường Trung tuyến AC và BH nên theo tính chất 3 đường trung tuyến
\(\Rightarrow\frac{AG}{AD}=\frac{2}{3}\)
b) do \(\Delta ABC\)cân tại A\(\Rightarrow\widehat{B}=\widehat{C}\)và \(AB=AC\)
Có AD là đường trung tuyến \(\Rightarrow BD=CD\)
Xét \(\Delta ABD\)và \(\Delta ACD\)ta có :
\(AB=AC\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
\(BD=CD\left(cmt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
c) \(\Delta ABC\)cân \(\Rightarrow AD\)vừa là đường trung tuyến vừa là đường cao \(\Rightarrow\widehat{A_1}=\widehat{A_2}\)
Xét \(\Delta AED\)và \(\Delta AFD\)có :
\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)
\(AD\)chung
\(\widehat{E_1}=\widehat{F}_2=\left(90^o\right)\)
\(\Rightarrow\Delta AED=\Delta AFD\left(ch-gn\right)\)
\(\Rightarrow ED=FD\left(dpcm\right)\)
d) Ta có \(BC=12cm\Rightarrow\frac{1}{2}BC=6m\)hay \(BD=CD=6cm\)
Lại có \(AD\)là đường cao ( do \(\Delta ABC\)cân nên vừa là đường trung tuyến vừa là đường cao )
Xét tam giác vuông \(ADC\), áp dụng định lý Py-ta-go , ta được \(AD^2+CD^2=AC^2\Rightarrow AD^2=AC^2-CD^2=10^2-6^2=100-36=64\)
\(\Rightarrow AD=8cm\)
từ a) có tỉ số \(\frac{AG}{AD}=\frac{2}{3}\Rightarrow\frac{AG}{8}=\frac{2}{3}\Rightarrow AG\approx5,4\)