Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì I đối xứng với H qua AC => \(\widehat{AIC}=\widehat{AHC}=90^o\)=>\(\widehat{AIC}+\widehat{AHC}=180^o\)=> AICH nội tiếp
b, Vì I đối xứng với H qua qua AC=> AI=AH
Vì I đối xứng với K qua qua AB=>AK=AH=> AI=AK
c,\(\widehat{KHB}=\widehat{ECB}\)vì cùng phụ với góc ABC (AB vuông góc với KH)
=> KH//CE. Mà CE vuông góc với AB=> CE vuông góc với AB => góc CEA =90 độ
=> Góc CEA= góc CHA =90 độ => AEHC nội tiếp. Mà AICH nội tiếp (theo a)
=> 5 điểm A,E,H,C,I cùng thuộc 1 đường tròn
...............................................................................
..........................................................................................
...........................................................................tgbvn JGKGITJNNFJFJNFJBFÒNBFOHRJ;FFJh' IIIor ỉie
D E F H I K C G x y z
a) K là điểm đối xứng với H qua DE => DE là trung trực của KH => DH=DK (1)
I là điểm đối xứng với H qua DF => DF là trung trực của IH => DH=DI (2)
Từ (1) và (2) => DI=DK (đpcm).
b) Gọi giao điểm của IK và DF là G
Gọi Cx là tia đối của CH ; Gy là tia đối của GH; Hz là tia đối của HC
Ta có: CE là trung trực của KH => CH=CK => CE là phân giác của ^KCH
=> CD là phân giác của ^ICx (hay ^GCx)
Tương tự: GD là phân giác của ^CGy
Xét \(\Delta\)HCG: ^CGy và ^GCx là 2 góc ngoài; CD và GD lân lượt là phân giác của ^GCx và ^CGy
Mà CD giao GD tại D => HD là phân giác ^CHG
Lại có: ^CHG và ^GHz là 2 góc kề bù;
HD là phân giác của ^CHG (cmt). Mà HD \(\perp\)HF => HF là phân giác của ^GHz
Xét \(\Delta\)HCG: ^GHz và ^HGI là 2 góc ngoài
HF là phân giác ^GHz, GF là phân giác ^HGI. HF giao GF tại F
=> CF là phân giác ^HCG
Thấy: ^HCG và ^KCH là 2 góc kề bù.
Mà CE và CF lần lượt là phân giác ^KCH và ^HCG => CE\(\perp\)CF hay CF\(\perp\)DE (đpcm).