K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDEF có DI là phân giác

nên EI/ED=IF/DF

=>EI/6=FI/7

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{EI}{6}=\dfrac{FI}{7}=\dfrac{EI+FI}{6+7}=\dfrac{8}{13}\)

Do đó: EI=48/13(cm); FI=56/13(cm)

b: Xét ΔDFE có IK//DE

nên IK/DE=FI/FE

hay \(IK=\dfrac{56}{13}:8\cdot6=\dfrac{42}{13}\left(cm\right)\)

a: Xét ΔDEF có DI là phân giác

nên \(\dfrac{DE}{DF}=\dfrac{EI}{IF}\)

=>\(\dfrac{EI}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)

=>EI=8(cm)

b: Ta có: EI+IF=EF

=>EF=6+8=14(cm)

Xét ΔEDF có MI//DF

nên \(\dfrac{MI}{DF}=\dfrac{EI}{EF}=\dfrac{EM}{ED}\)

=>\(\dfrac{MI}{6}=\dfrac{EM}{10}=\dfrac{6}{14}=\dfrac{3}{7}\)

=>\(MI=\dfrac{18}{7}\left(cm\right);EM=\dfrac{30}{7}\left(cm\right)\)

MD+ME=DE

=>MD+30/7=10

=>MD=40/7(cm)

c: Xét ΔDEF có DI là phân giác

nên \(\dfrac{EI}{IF}=\dfrac{ED}{DF}\left(1\right)\)

Xét ΔEDF có MI//DF

nên \(\dfrac{EI}{IF}=\dfrac{ME}{MD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{DF}=\dfrac{ME}{MD}\)

14 tháng 11 2021

a) Xét tam giác DEF vuông tại D 

=> DE2+DF2= EF2 (định lí Py-ta-go)

=> 122+162= EF2 

=> 144 + 256 = EF2

EF2 = 400 = 202

=> EF = 20cm

Xét tam giác DEF vuông tại D có DI là trung tuyến ( I là trung điểm EF)

=> DI = 1/2 EF = 20/2 = 10cm

Vậy DI = 10cm

b) Vì tam giác DEF vuông tại D (gt)

=> ED ⊥ DF 

mà ED ⊥ IK (gt)

=> IK // DF 

Xét tam giác DEF vuông tại D có : I là trung điểm EF (gt)

                                                       IK // DF (cmt)

=> K là trung điểm ED

=> EK = KD = 1/2 ED

mà ED = 12cm

=> KD = 6cm 

Xét tam giác IKD vuông tại K có

KD2 + KI2 = DI2

=> 62 + KI2 = 102

KI2 = 102- 62 = 100-36=64 = 82

=> KI = 8cm

Vậy KI = 8cm

15 tháng 5 2021

a) xét ΔHED và ΔDEF có 

\(\widehat{EHD}=\widehat{EDF}=\)90o

\(\widehat{E} chung\)

=> ΔHED ∼ ΔDEF (gg)

b) Xét ΔDEF có \(\widehat{D}=\)90o

=> DE2+DF2=EF2

=>62+82=EF2

=> EF=10 cm

SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10

=> DH =4,8 cm

c) Xét ΔDEH có \(\widehat{EHD}=90\)o

=> HD2.HE2=ED2

=>4.82+HE2=62

=> HE=3.6

ta lại có DI là phân giác 

=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)

=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2

=> IH=EH-EI=3.6-2=1.6

a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có

\(\widehat{HED}\) chung

Do đó: ΔHED\(\sim\)ΔDEF(g-g)

14 tháng 11 2019

a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)

và \(EF^2=5^2=25\left(cm\right)\)

\(\Rightarrow DE^2+DF^2=EF^2\)

\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông

b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)

\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)

c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)

Lại có IK vuông góc DF

\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF

\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)

14 tháng 11 2019

D E F I K

Giải: a) Ta có: DE2 + DF= 32 + 42 = 9 + 16 = 25 

             EF2 = 52 = 25

=> DE2 + DF2 = EF2 => DEF là t/giác vuông (theo định lí Pi - ta - go đảo)

b) Xét t/giác DEF có DI là đường trung tuyến

=> DI = EI = IF = 1/2EF = 1/2.5 = 2,5 (cm)

c) Ta có: DI = IF => t/giác DIF là t/giác cân

có IK là đường cao

=> IK đồng thời là đường trung tuyến

=> DK = KF = 1/2 DF = 1/2.4 = 2 (cm)

Áp dụng định lí Pi - ta - go vào t/giác IDK vuông tại K, ta có:

DI2 = IK2 + DK2 

=> IK2 = DI2 - DK2 = 2,52 - 22 = 2,25

=> IK = 1,5 (cm)

2 tháng 4 2022

Xét ΔDEF vuông ở D , theo định lý Pi-ta-go ta được :

\(\Rightarrow EF=\sqrt{DE^2+DF^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)

Ta có : DI là phân giác \(\widehat{EDF}\)

\(\Rightarrow\dfrac{EI}{IF}=\dfrac{DE}{DF}\)

hay \(\dfrac{EI}{IF}=\dfrac{15}{20}=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{EI}{3}=\dfrac{IF}{4}=\dfrac{EI+IF}{3+4}=\dfrac{25}{7}\)

\(\Rightarrow EI=\dfrac{25}{7}.3=\dfrac{75}{7}\left(cm\right)\)

\(\Rightarrow FI=\dfrac{25}{7}.4=\dfrac{100}{7}\left(cm\right)\)

a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xet ΔEDF có EK là phân giác

nên DK/DE=FK/FE

=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1

=>DK=3cm; FK=5cm

b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có

góc DEK=góc HEI

=>ΔDEK đồng dạng với ΔHEI

=>ED/EH=EK/EI

=>ED*EI=EK*EH

c: góc DKI=90 độ-góc KED

góc DIK=góc HIE=90 độ-góc KEF

mà góc KED=góc KEF
nên góc DKI=góc DIK

=>ΔDKI cân tại D

mà DG là trung tuyến

nên DG vuông góc IK

18 tháng 3 2023

bạn ơi, góc DKI vuông góc từ đâu vậy?

 

a: Xét ΔDEF có DI là phân giác

nên \(\dfrac{IE}{IF}=\dfrac{DE}{DF}\)

=>\(\dfrac{IE}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)

=>IE=8(cm)

b: Xét ΔEDF có MI//DF

nên \(\dfrac{EM}{ED}=\dfrac{EI}{EF}\)

=>\(\dfrac{EM}{10}=\dfrac{8}{12.8}=\dfrac{5}{8}\)

=>\(EM=\dfrac{50}{8}=6,25\left(cm\right)\)

Ta có: ME+MD=DE

=>MD+6,25=10

=>MD=3,75(cm)

Xét ΔEDF có IM//DF

nên \(\dfrac{IM}{DF}=\dfrac{EI}{EF}\)

=>\(\dfrac{IM}{6}=\dfrac{8}{12,8}=\dfrac{5}{8}\)

=>\(IM=6\cdot\dfrac{5}{8}=3,75\left(cm\right)\)

c: Xét ΔEDF có MI//DF

nên \(\dfrac{ME}{MD}=\dfrac{EI}{IF}\)

mà \(\dfrac{EI}{IF}=\dfrac{DE}{DF}\)

nên \(\dfrac{ME}{MD}=\dfrac{DE}{DF}\)