Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDEF có DI là phân giác
nên \(\dfrac{DE}{DF}=\dfrac{EI}{IF}\)
=>\(\dfrac{EI}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)
=>EI=8(cm)
b: Ta có: EI+IF=EF
=>EF=6+8=14(cm)
Xét ΔEDF có MI//DF
nên \(\dfrac{MI}{DF}=\dfrac{EI}{EF}=\dfrac{EM}{ED}\)
=>\(\dfrac{MI}{6}=\dfrac{EM}{10}=\dfrac{6}{14}=\dfrac{3}{7}\)
=>\(MI=\dfrac{18}{7}\left(cm\right);EM=\dfrac{30}{7}\left(cm\right)\)
MD+ME=DE
=>MD+30/7=10
=>MD=40/7(cm)
c: Xét ΔDEF có DI là phân giác
nên \(\dfrac{EI}{IF}=\dfrac{ED}{DF}\left(1\right)\)
Xét ΔEDF có MI//DF
nên \(\dfrac{EI}{IF}=\dfrac{ME}{MD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{DF}=\dfrac{ME}{MD}\)
a: Xét ΔDEF có DI là phân giác
nên \(\dfrac{IE}{IF}=\dfrac{DE}{DF}\)
=>\(\dfrac{IE}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)
=>IE=8(cm)
b: Xét ΔEDF có MI//DF
nên \(\dfrac{EM}{ED}=\dfrac{EI}{EF}\)
=>\(\dfrac{EM}{10}=\dfrac{8}{12.8}=\dfrac{5}{8}\)
=>\(EM=\dfrac{50}{8}=6,25\left(cm\right)\)
Ta có: ME+MD=DE
=>MD+6,25=10
=>MD=3,75(cm)
Xét ΔEDF có IM//DF
nên \(\dfrac{IM}{DF}=\dfrac{EI}{EF}\)
=>\(\dfrac{IM}{6}=\dfrac{8}{12,8}=\dfrac{5}{8}\)
=>\(IM=6\cdot\dfrac{5}{8}=3,75\left(cm\right)\)
c: Xét ΔEDF có MI//DF
nên \(\dfrac{ME}{MD}=\dfrac{EI}{IF}\)
mà \(\dfrac{EI}{IF}=\dfrac{DE}{DF}\)
nên \(\dfrac{ME}{MD}=\dfrac{DE}{DF}\)
Cho tam giác DEF có DE=4cm,EF=5cm,DF=6cm.trên cạnh DE lấy điểm M sao cho DM=3cm,trên cạnh DF lấy điểm N sao cho DN=2cm a,CM: DEF đồng dạng DMN b, tính MN
a) Xét ΔDEF và ΔDNM có
\(\dfrac{DE}{DN}=\dfrac{DF}{DM}\left(\dfrac{4}{2}=\dfrac{6}{3}\right)\)
\(\widehat{D}\) chung
Do đó: ΔDEF∼ΔDNM(c-g-c)
Trả lời:
D E F M N
a, Xét tam giác DEF có:
M là trung điểm DE
MN // EF
=> N là trung điểm EF
b, Sửa đề: Tính EF biết MN = 5cm.
Xét tam giác DEF có:
M là trung điểm DE
N là trung điểm DF
=> MN là đường trung bình của tam giác DEF
=> \(MN=\frac{EF}{2}\Rightarrow EF=2MN=2.5=10\left(cm\right)\)
a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)
và \(EF^2=5^2=25\left(cm\right)\)
\(\Rightarrow DE^2+DF^2=EF^2\)
\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông
b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)
\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)
c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)
Lại có IK vuông góc DF
\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF
\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)