K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2024

loading... 

a) Do ∆DEF cân tại D (gt)

⇒ DE = DF

Do M là trung điểm của EF (gt)

⇒ ME = MF

Xét ∆DEM và ∆DFM có:

DE = DF (cmt)

DM là cạnh chung)

ME = MF (cmt)

⇒ ∆DEM = ∆DFM (c-c-c)

b) Sửa đề: Chứng minh DM ⊥ EF

Do ∆DEM = ∆DFM (cmt)

⇒ ∠DME = ∠DMF (hai góc tương ứng)

Mà ∠DME + ∠DMF = 180⁰ (kề bù)

⇒ ∠DME = ∠DMF = 180⁰ : 2 = 90⁰

⇒ DM ⊥ EF

c) Xét ∆DEM và ∆KFM có:

DM = KM (gt)

∠DME = ∠KMF (đối đỉnh)

ME = MF (cmt)

⇒ ∆DEM = ∆KFM (c-g-c)

⇒ DE = KF (hai cạnh tương ứng)

Mà DE = DF (cmt)

⇒ KF = DF

⇒ ∆FDK cân tại F

loading...  loading...  

a: Xét ΔDEM và ΔDFM có

DE=DF

EM=FM

DM chung

Do đó: ΔDEM=ΔDFM

b: Ta có: ΔDEF cân tại D

mà DM là đường trung tuyến

nên DM là đường cao

c: Xét tứ giác DENF có 

M là trung điểm của DN

M là trung điểm của FE

Do đó: DENF là hình bình hành

Suy ra: DE//FN

24 tháng 12 2020

a) Xét △DEM và △KFM có

DM=KM(giả thiết)

góc DME=góc KMF(2 góc đối đỉnh)

EM=MF(Vì M là trung điểm của EF)

=>△DEM =△KFM(c-g-c)

=> góc MDE=góc MKF (2 góc tương ứng)

hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF

=>DE//KF

b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ

Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có

HD=HP

HE là cạnh chung

=>   △DHE= △PHE(2 cạnh góc vuông)

=> góc DEM=góc PEM

=> EH là tia phân giác của góc DEP 

   hay EF là tia phân giác của góc DEP 

vậy EF là tia phân giác của góc DEP 

 

 

 

 

 

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

20 tháng 12 2023

loading...  loading...  loading...  

8 tháng 4 2021

a, tu ve hinh :

tamgiac ABC can tai A => AB = AC va goc ABC = goc ACB (gn)

goc AIC = goc AIB = 90 do AI | BC (gt)

=> tamgiac AIC = tamgiac AIB (ch - gn)

=> IB = IC (dn)

b, dung PY-TA-GO

c, AE = AF (gt) => tamgiac AFE can tai E (dn)

=> goc AFE = (180 - goc BAC) : 2 (tc)

tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 (tc)

=> goc AFE = goc ACB ma 2 goc nay dong vi 

=> EF // BC (dh)

vay_

28 tháng 4 2019

a, Xét 2 tam giác vuông DEM và HEM có:

             ME cạnh chung

            \(\widehat{DEM}\)=\(\widehat{HEM}\)(gt)

=> tam giác DEM=tam giác HEM(CH-GN)

b, vì tam giác DEM=tam giác HEM(câu a) suy ra MD=MH(2 cạnh tương ứng)

c, trong tam giác FKE có: FD,KH là 2 đường cao cắt nhau tại M

=> K,M,H thẳng hàng

D E F M H K

Câu C của bạn làm đúng ko vậy

2 tháng 5 2018

a. Xét tam giác BMC và tam giác DMA có

MB=MD(gt) BMC=DMA(đối đỉnh)

MA=MC(vì M là trung điềm AC)

Vậy tam giác BMC = tam giác DMA(c-g-c)

=>MBC=MDA( 2 góc tương ứng)

=> AD // BC

b. Xét tam giác AMB và tam giác CMD có

MA=MC(vì M là trung điềm AC)

AMB=CMD( đối đỉnh)

MB=MD(gt)

Vậy tam giác AMB = tam giác CMD(c-g-c)

=> AB=CD(2 cạnh tương ứng)

mà AB=AC(vì tam giác ABC cân tại A)

=> AC=CD

=> tam giác ACD cân tại C

c. trong tam giác DEB có M là trung điểm của BD( vì MD=MB)

=> EM là đường trung tuyến thứ nhất (1)

mặt khác AC=CE(gt)

MC=1/2 AC (vì M là trung điềm AC)

=> MC= 1/2 CE 

22 tháng 4 2018

a, áp dụng tổng 3 góc trong 1 tam giác => góc AB= 25 độ

AC < AB ( 65 độ > 25 độ)

b, Xét tam giác BHC và tam giác BHE có: BH- chung ; BHA = BHE (=90 độ) ; AH = HE ( theo đề bài)

=> hai tam giác bằng nhau (c.g.c) => BA = BE => tam giác BEA cân tại B (đpcm)

c, Dễ dàng chứng minh được tam giác BEC = tam giác BAC

=> BEC = BAC = 90 độ

=> tam giác BEC vuông tại E (đpcm)

d, Ta có: MH đi qua trung điểm của AD và AE trong tam giác ADE => NM là đường trung bình của tam giác này => MN // DE (đpcm)

Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả

19 tháng 3 2020

mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng