K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔDEN vuông tại N và ΔDFM vuông tại M có 

DE=DF(ΔDEF cân tại D)

\(\widehat{EDN}\) chung

Do đó: ΔDEN=ΔDFM(cạnh huyền-góc nhọn)

Suy ra: DN=DM(hai cạnh tương ứng)

Xét ΔDEF có 

\(\dfrac{DM}{DE}=\dfrac{DN}{DF}\left(DM=DN;DE=DF\right)\)

nên MN//EF(Định lí Ta lét đảo)

Xét tứ giác EMNF có MN//EF(Cmt)

nên EMNF là hình thang

mà \(\widehat{MEF}=\widehat{NFE}\)(ΔDEF cân tại D)

nên EMNF là hình thang cân

b) Xét ΔDMH vuông tại M và ΔDNH vuông tại N có

DH chung

DM=DN(cmt)

Do đó: ΔDMH=ΔDNH(cạnh huyền-cạnh góc vuông)

c) Ta có: ΔDMH=ΔDNH(cmt)

nên HM=HN(hai cạnh tương ứng)

Ta có: DM=DN(cmt)

nên D nằm trên đường trung trực của MN(1)

Ta có: HM=HN(cmt)

nên H nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra DH là đường trung trực của MN

hay DH\(\perp\)MN

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua Ia) Chứng minh tứ...
Đọc tiếp

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.

Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.

Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.

Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua I

a) Chứng minh tứ giác DKEH là hình chữ nhật.

b) Nếu tam giác DEF vuông cân tại D thì tứ giác DKEH là hình gì ? Vì sao ? Vẽ hình minh họa.

c) Vẽ CA vuông DF ( A thuộc DF). Chứng minh tam giác AHK là tam giác vuông.

Bài 4 : Cho tam giác DEF, gọi M,N lần lượt là trung điểm của DE, DF. Qua F vẽ đường thẳng song song với DE cắt đường thẳng MN tại K

a) Chứng minh tứ giác MEFK là hình bình hành.

b) Biết MN=5 cm. Tính độ dài EF?

Bài 5: Cho tam giác ABC cân tại A. Gọi H,I lần lượt là trung điểm của BC, AC.

a) Tứ giác HIAB là hình gì ? Vì sao?

b) Gọi Q là điểm đối xứng của H qua I. Chứng minh tứ giác AHCQ là hình chữ nhật.

c) Tìm thêm điều kiện của tam giác ABC cân tại A để tứ giác AHCQ là hình vuông.

0
4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

a: Xét ΔDNH vuông tại N và ΔDMF vuông tại M có

góc MDF chung

=>ΔDNH đồng dạng với ΔDMF

b: Xét ΔEMH vuông tại M và ΔENF vuông tại N có

góc MEH chung

=>ΔEMH đồng dạng với ΔENF

c: Xét ΔEIH có

EM vừa là đường cao, vừa là trung tuyến

=>ΔEIH cân tại E

22 tháng 2 2020

a) Tứ giác BHCkBHCk có 2 đường chéo BCBCHKHK cắt nhau tại trung điểm MM của mỗi đường

⇒BHCK⇒BHCK là hình bình hành.

b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC

HC⊥ABHC⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BCHD⊥BC,D∈BCHD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHICDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKCGK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

...

11 tháng 7 2015

đề bạn ghi sai rồi, phải là BD và CE chứ

a)Tam giác BEC và CDB có:

        Góc E=D=90 độ

        BC cạnh chung

       Góc B=C(tam giác ABC đều)

vậy tam giác BEC=CDB(Cạnh huyền-góc nhọn)

b) Vì tam giác BEC=CDB => BE=CD(cạnh tương ứng)

mà                               BE+AE=CD+AD

Từ hai điều này suy ra AE=AD. nên tam giác AED cân tại A, lại có góc A bằng 60 độ, nên tam giác AED là tam giác đều

=> Góc AED=60 độ.

c) ta có Góc AED=ABC=60 độ

mà chúng ở vị trí đồng vị nên ED//BC.

Tứ giác BEDC có ED//BC vậy BEDC là hình thang.

Hình thang BEDC có 2 góc kề đáy góc B=C=60 độ

Vậy BEDC là hình thang cân.

d) Xét tam giác ABI và ACI có:

     B=C=90 độ

   AI cạnh chung

   AB=AC

Vậy Tam giác ABI=ACI(Cạnh huyền-cạnh góc vuông) 

=>IB=IC hay I thuộc đường trung trực của BC (1)

Tam giác ABC đều, có AH là đường cao nên đồng thời cũng là trung trực của BC (2)

từ (1) và (2) suy ra A, H, I thuộc đường trung trực của BC hay A, H, I thẳng hàng.

  

8 tháng 8 2020

Góc BEC=góc BFC=90 độ

=>BCEF LÀ TỨ GIÁC NỘI TIẾP

=>Góc AFE=gócC (1)

Tam giác BNC đồng dạng với tam giác BMC(g.c.g)

=>Góc BNC=góc BMC

=>BCMN là tứ giác nội tiếp

=>Góc ANM=góc AMN=góc C (2)

Từ 1 và 2

Có EF song song với MN và góc ANM=góc AMN

=>EMNF là hình thang cân