K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

C D H B K M N

Qua D kẻ đường thẳng song song với CK cắt CB tại M.

Kẻ CN vuông góc với DN

=> HDMC là hình chữ nhật.  ( Tự chứng minh)

=> CN = HD (1)

DM//CK theo định lí ta-let.

=> \(\frac{CH}{BC}=\frac{DK}{BK}=\frac{1}{3}\)( vì DB = 2DK => DK =1/3 BK )

=> CH = 1/3  .  BC 

Xét tam giác DCM vuông tại C. có đường cao CN.

=> \(\frac{1}{CN^2}=\frac{1}{CD^2}+\frac{1}{CH^2}=\frac{1}{CD^2}+\frac{1}{\frac{BC^2}{9}}=\frac{1}{CD^2}+\frac{9}{BC^2}\) (2)

Từ (1); (2) => \(\frac{1}{DH^2}=\frac{1}{CD^2}+\frac{9}{BC^2}\)

4 tháng 3 2018

B A C D

Vì    \(\widehat{CDB}+\widehat{ACB}=90^o\)  mà  \(\widehat{CDB}+\widehat{ABD}=90^o\) ( vì tam giác ABD vuông tại A )

nên suy ra   \(\widehat{ACB}=\widehat{ABD}\)

Mặt khác : \(\widehat{ABC}+\widehat{ACB}=90^o\) =>>>   \(\widehat{ABC}+\widehat{ABD}=90^o\) hay \(\widehat{CBD}=90^o\) => \(\Delta BCD\)vuông tại B

- Xét \(\Delta BCD\)vuông tại B có BA là đường cao , theo hệ thức lượng trong tam giác vuông , ta có :

\(\frac{1}{BC^2}+\frac{1}{DB^2}=\frac{1}{AB^2}\)   ( đpcm )

4 tháng 3 2018

Cảm ơn bạn nhiều ạ

22 tháng 1 2019

xét tam giác BDC có góc BDC+ góc C+ góc DBC=180 độ 

mà góc CDB+ góc ACB=90 độ 

suy ra góc DBC =90 độ

suy ra tam giác DBC vuông tại B có đường cao AB( vì tam giác ABC vuông tại A)

Áp dụng hệ thức lượng vào tam giác DBC ta có:

1/BC^2+1/BD^2=1/AB^2( ĐPCM)

25 tháng 10 2017

a) Xét tam giác AEB và tam giác MAD có:

\(\widehat{ABE}=\widehat{MDA}\left(=90^o\right)\)

\(\widehat{AEB}=\widehat{MAD}\) (So le trong)

Vậy nên \(\Delta AEB\sim\Delta MAD\left(g-g\right)\Rightarrow\frac{AE}{MA}=\frac{BE}{DA}\Rightarrow AE.DA=AM.BE\)

\(\Rightarrow AE^2.a^2=MA^2.BE^2\Rightarrow AE^2.a^2=MA^2\left(AE^2-AB^2\right)\)

\(\Rightarrow AE^2.a^2=MA^2.AE^2-MA^2.a^2\Rightarrow\left(AE^2+MA^2\right).a^2=AE^2.AM^2\)

\(\Rightarrow\frac{1}{AE^2}+\frac{1}{AM^2}=\frac{1}{a^2}\)

19 tháng 10 2019

A B C D O E M G H F K

a) Xét \(\frac{a^2}{AE^2}+\frac{a^2}{AM^2}=\frac{CM^2}{ME^2}+\frac{CE^2}{ME^2}=1\)(ĐL Thales và Pytagoras). Suy ra \(\frac{1}{AE^2}+\frac{1}{AM^2}=\frac{1}{a^2}.\)

b) Ta dễ thấy \(\Delta\)ACG = \(\Delta\)ACM (c.g.c), suy ra ^AGC = ^AMC = ^BAE. Từ đây \(\Delta\)ABE ~ \(\Delta\)GBA (g.g)

Vậy BE.BG = AB2 = BO.BD nên \(\Delta\)BOE ~ \(\Delta\)BGD (c.g.c) (đpcm).

c) Gọi CH giao AB tại K. Theo hệ quả ĐL Thales \(\frac{CM}{BA}=\frac{EC}{EB}=2\)(Vì \(BE=\frac{a}{3}\))\(\Rightarrow CM=2a\)

Ta cũng có \(\frac{CF}{FM}=\frac{KB}{BA}\), suy ra \(\frac{\frac{a}{2}}{2a-\frac{a}{2}}=\frac{KB}{a}\Leftrightarrow KB=\frac{a}{3}\left(=BE\right)\)

Từ đó \(\Delta\)EKB vuông cân tại B, mà \(\Delta\)ABC vuông cân tại B nên E là trực tâm \(\Delta\)ACK

Suy ra AE vuông góc CK (tại H). Vậy, theo hệ thức lượng trong tam giác vuông (\(\Delta\)MEC) thì

\(CH^2=HE.HM\Leftrightarrow CH^3=HE.HC.HM\Leftrightarrow CH=\sqrt[3]{HE.HC.HM}\)(đpcm).

28 tháng 11 2018

cho A=1+2+22+.........+22009+22010.Tìm số dư khi chia a cho 7