Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AB = AC ( ABC cân )
Mà AC = AH + CH = 6 + 4 = 10cm
=> AB = 10 cm
Áp dụng địnhl iý pitago vào tam giác vuông AHB, có:
\(AB^2=AH^2+HB^2\)
\(\Rightarrow HB=\sqrt{AB^2-AH^2}=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
Áp dụng định lý pitago vào tam giác vuông BHC, có:
\(BC^2=BH^2+CH^2\)
\(\Rightarrow BC=\sqrt{8^2+4^2}=\sqrt{80}=4\sqrt{5}cm\)
bài 1 ta có :
Vì ΔABC cân tại A nên AB=AC=10cm
Vì ΔABH vuông tại H
Vì ΔBHC vuông tại H
cho tam giác ABC vuông cân ở A, biết AB=6cm, AC=8cm, kẻ AH vuông góc với BC tại H. Tính AH, BH và HC
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
A B C H 7 cm 2 cm 2 cm
Ta có: AC = AH + HC = 7 + 2 = 9 (cm)
Vì AB = AC => AB = 9 cm
Áp dụng định lí Pi - ta - go vào t/giác AHB vuông tại H, ta có:
AB2 = AH2 + BH2
=> BH2 = AB2 - AH2 = 92 - 72 = 32
Áp dụng định lí Pi - ta - go vào t/giác AHC vuông tại H, ta có:
BC2 = BH2 + HC2 = 32 + 22 = 36
=> BC = 6 (cm)
Lê Xuân Trường
1-Xét tam giác ABH và tam giác ACH có
Góc AHB = Góc AHC = 90 độ
AC = AB (Do tam giác ABC cân tại A)
Góc ABH = Góc ACH(Do tam giác ABC cân tại A)
Suy ra tam giác ABH = tam giác ACH (cạnh huyền -góc nhọn )
Suy ra BH = CH =3 cm (2 cạnh tương ứng )
2 . Tui không biết làm thông cảm nhe !
bài 1 ta có :
AC=AH+HC=6+4=10cm
Vì ΔABC cân tại A nên AB=AC=10cm
Vì ΔABH vuông tại H
⇒AB\(^2\)=AH\(^2\)+BH\(^2\)
⇒10\(^2\)=6\(^2\)+BH\(^2\)
⇒BH=8cm
Vì ΔBHC vuông tại H
⇒BC\(^2\)=BH\(^2\)+CH\(^2\)
⇒BC\(^2\)=8\(^2\)+4\(^2\)
⇒BC=4\(\sqrt{5}\)cm
vẽ hình nx bn ơi ❤