K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho 2 góc kề bù xOy và yOz. Gọi Om, On lần lượt là các tia phân giác của góc xOy; yOza. Cm Om  I  Onb. Lấy điểm H thuộc tia Oy. Kẻ tia HE  I  Om, HK  I  On (  \(E\in Om;K\in On\)). CM góc EHK = 90oc. Trên nửa mặt phẳng bờ OH có chứa tia Ox, kẻ tia Ht // Ox. Ht cắt Om tại P. CM HE là tia phân giác của  góc OHPd. Giả sử 3.OHP = 2.HOx. Tính HOx và OPH2. Cho tam giác AMN có góc A = 82o; M = 49o. Gọi AP là...
Đọc tiếp

1. Cho 2 góc kề bù xOy và yOz. Gọi Om, On lần lượt là các tia phân giác của góc xOy; yOz

a. Cm Om   On

b. Lấy điểm H thuộc tia Oy. Kẻ tia HE  I  Om, HK  I  On (  \(E\in Om;K\in On\)). CM góc EHK = 90o

c. Trên nửa mặt phẳng bờ OH có chứa tia Ox, kẻ tia Ht // Ox. Ht cắt Om tại P. CM HE là tia phân giác của  góc OHP
d. Giả sử 3.OHP = 2.HOx. Tính HOx và OPH

2. Cho tam giác AMN có góc A = 82o; M = 49o. Gọi AP là tia đối của tia AM. Kẻ tia Ax nằm trong góc PAN và song song với MN

a. CM Ax là tia phân giác của góc PAN

b. Từ N kẻ NE // AM \(\left(E\in\text{Ax}\right)\text{ }\). So sánh các cặp góc của 2 tam giac AMN và AEN

c. Vẽ đường thẳng d đi qua M và vuông góc với MN, từ A kẻ AB vuông góc với d \((B\in d)\). CM rằng B,A,E thẳng hàng

3.Cho tam giác ABC có góc A = 90o Kẻ tia phân giác của góc ABC cắt AC tại M. Từ A kẻ đường thẳng song song với BM, cắt tia đối của tia BC tại D

a. CM góc DAB = BDA

b. Trên nửa mặt phẳng bờ BC không chứa A, vẽ tia Ay sao cho góc CAy = C. CM rằng đường thẳng BM cắt đường thẳng chứa tia Ay

c. Trên nửa mặt phẳng bờ BC khoongchuasw A, vẽ tia Bz sao cho góc ABz = 90o. CM góc CAy = CBz

2
17 tháng 10 2019

giúp mk với
mk đang cần gấp

TT-TT

17 tháng 10 2019

TL 1 câu cx đc mà

8 tháng 3 2020

A D M H E N I

Xét tam giác AMN có góc MAN = 1200 suy ra tam giác AMN cân tại A

suy ra góc AMN=góc ANM = 300

Xét tam giác AHM và tam giác AHN

có AH chung

góc AHM = góc AHN = 900

AM=AN (vì tam giác AMN cân tại A)

suy ra tam giác AHM = tam giác AHN ( cạnh huyền-cạnh góc vuông)

suy ra góc MAH=góc HAN (hai góc tương ứng)

suy ra AH là tia phân giác của góc MAN

b) Xét tam giác vuong AHD và tam giác vuông AhE

có AH chung

góc hAD=góc HAE (CMT)

suy ra tam giác AHD =  tam giác  AHE ( cạnh huyền-góc nhọn)  (1)

suy ra AD=AE suy ra tam giác ADE cân tại A

suy ra góc ADE=góc AED=300

suy ra góc ADE = góc AMN = 300

mà góc ADE đồng vị với góc AMN

suy ra DE//MN

c)  tam giác HEN vuông tại E suy ra góc EHN = 600

tam giác HDM vuông tại D suy ra góc DHM = 600

mà góc DHM + góc DHE + góc EHN = 1800

suy ra góc DHE = 600   (2) 

Từ (1) suy ra DH = HE suy ra tam giác DHE cân tại H  (3)

Từ (2) và (3) suy ra tam giác DHE đều

d) Xét tam giác MIN vuoog tại N suy ra góc NIM = 600

góc IAN kề bù với góc NAM

suy ra góc NAI = 600

tam giác ANI có góc AIN=góc ANI=góc IAN = 600

suy ra tam giác ANI đều

suy ra AI = NI = 10cm

4 tháng 11 2020

Ta có : góc A + góc B +góc C = 180 ( Định lý tổng 3 góc của 1 tam giác )
             80     +  50   + góc C   = 180
          => góc C = 180 -80 -50 = 50 
Ta có: góc BAC + góc CAx = 180 ( kề bù )
                80       + góc Cax = 180
                => Góc Cax = 100
Vì AI là tia phân giác của Góc CAx => góc CAy = góc yAx 
=> góc CAy = Góc CAx / 2 =100/2 = 50
 Ta có ( góc yAC + góc CAB ) + góc BAC = 180 ( ở vị trí trong cùng phía )
 Suy ra Ay // BC ( đpcm)

8 tháng 3 2020

A M N D H E I

Xét tam giác AMN có góc MAN = 1200 suy ra tam giác AMN cân tại A

suy ra góc AMN=góc ANM = 300

Xét tam giác AHM và tam giác AHN

có AH chung

góc AHM = góc AHN = 900

AM=AN (vì tam giác AMN cân tại A)

suy ra tam giác AHM = tam giác AHN ( cạnh huyền-cạnh góc vuông)

suy ra góc MAH=góc HAN (hai góc tương ứng)

suy ra AH là tia phân giác của góc MAN

b) Xét tam giác vuong AHD và tam giác vuông AhE

có AH chung

góc hAD=góc HAE (CMT)

suy ra tam giác AHD =  tam giác  AHE ( cạnh huyền-góc nhọn)  (1)

suy ra AD=AE suy ra tam giác ADE cân tại A

suy ra góc ADE=góc AED=300

suy ra góc ADE = góc AMN = 300

mà góc ADE đồng vị với góc AMN

suy ra DE//MN

c)  tam giác HEN vuông tại E suy ra góc EHN = 600

tam giác HDM vuông tại D suy ra góc DHM = 600

mà góc DHM + góc DHE + góc EHN = 1800

suy ra góc DHE = 600   (2) 

Từ (1) suy ra DH = HE suy ra tam giác DHE cân tại H  (3)

Từ (2) và (3) suy ra tam giác DHE đều

d) Xét tam giác MIN vuoog tại N suy ra góc NIM = 600

góc IAN kề bù với góc NAM

suy ra góc NAI = 600

tam giác ANI có góc AIN=góc ANI=góc IAN = 600

suy ra tam giác ANI đều

suy ra AI = NI = 10cm

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

a: Xét ΔAMN có

Ax vừa là đường cao, vừa là phân giác

=>ΔAMN cân tại A

b: BE//AC

=>góc BEM=góc ANE

=>góc BEM=góc BME

=>BE=BM

Xét ΔDEB và ΔDNC có

góc DBE=góc DCN

DB=DC

góc BDE=góc NDC

=>ΔDEB=ΔDNC

=>BE=NC

=>BE=CN