K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

XET TAM GIAC AMB VA TAM GIAC ANC CO

AB=AC(GT)

BM=CN(GT)

GOCS MBA=GOC NCA

=>TM GIACS AMB = TAM GIAC AMN 

=> AM=AN(dpcm)

=>tam giác amn can tai A

11 tháng 3 2017

Các bạn giúp mình nhé 

21 tháng 4 2020

a) Vì tam giác ABC cân => \(\hept{\begin{cases}AB=AC\\\widehat{ABM}=\widehat{ANC}\end{cases}}\)

mà BM=CN => \(\Delta AMB=\Delta ANC\left(cgc\right)\)=> AM=AN

=> Tam giác AMN cân tại A

b) \(S_{AMB}=S_{ANC}\)=> \(BH\cdot AM=CK\cdot AN\)

<=> BH=CK (vì AM=AN)
c) \(\hept{\begin{cases}\widehat{AHB}=\widehat{AKC}=90^o\\AB=AC\\BH=CK\end{cases}\Rightarrow\Delta AHB=\Delta AKC\left(ch-gv\right)}\)

=> AH=CK

28 tháng 3 2020

Ta có : tam giác AMH = tam giác AMK 

=> AH = AK 

Xét tam giác AHI và tam giác AKI có : 

AH = AK 

góc HAI = góc IAK ( vì AI là phương giác ) 

AI chung 

=> tam giác AHI = tam giác AKI 

=> góc AHI = góc AKI = 180 độ / 2 = 90 độ 

và HI = IK  = HK/ 2 = 6/2 = 3 

Xét tam giác vuông  AIK  vuông tại I có  : 

AI = \(\sqrt{AK^2-IK^2}=\sqrt{5^2-3^2}=4\)

=> AI = 4 cm

Ta có hình vẽ:

A B C M H K

(Ảnh ko chuẩn lắm)

Vì \(\Delta ABC\)cân tại A nên AM vừa là tia phân giác, vừa là đường cao của \(\Delta ABC\)

=> MB=MC(t/chất của đường cao trong tam giác cân, tự chứng minh nhé)

Xét \(\Delta MBH\)và \(\Delta MCK:\)

BM=CM(cmt)

\(\widehat{HBM}=\widehat{KCM}\)\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)

=> HB=KC( 2 cạnh tương ứng)

Mà AB=AC => AH=AK

Xét \(\Delta AHI\)và \(\Delta AKI:\)

AH=AK (cmt)

AI: cạnh chung

\(\widehat{HAI}=\widehat{KAI}\)(gt)

\(\Rightarrow\Delta AHI=\Delta AKI\left(c-g-c\right)\)

=> HI=IK(2 cạnh tương ứng)

\(\Rightarrow IK=\frac{HK}{2}=\frac{6}{2}=3cm\)

Lại có: AH=AK => \(\Delta AHK\)cân tại A

=> AI là đường cao của \(\Delta AHK\)

Xét \(\Delta AIK\)vuông tại I có:

Áp dụng định lý Py- ta-go, ta có:

AI2+IK2=AK2

=> AI2=AK2-IK2

=> AI2=52-32

=> AI2=16

=> AI=4cm

Vậy AI=4cm