Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét tứ giác ABCD có
M la trung điểm của AC
M là trung điểm của BD
DO đó: ABCD là hình bình hành
Suy ra: AB//CD và AB=CD
a: Xét ΔADM và ΔCBM có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)
MD=MB
Do đó: ΔADM=ΔCBM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
hay CD\(\perp\)AC
a) Xét \(\Delta MAP\)và \(\Delta BAN\),ta có:
\(MA=BA\left(gt\right)\)
\(\widehat{MAP}=\widehat{BAN}\)(Vì đối đỉnh)
\(AP=AN\left(gt\right)\)
=> \(\Delta MAP=\Delta BAN\)\(\left(c.g.c\right)\)
b) Vì \(\Delta MAP=\Delta BAN\)=> \(MP=NB\)(2 cạnh tương ứng)
c) Từ điểm N gióng xuống MB một đường thẳng và cắt MB tại E, tạo với đoạn thẳng MB 1 góc = 90 độ.
Từ điểm P gióng xuống MB một đường thẳng và cắt MB tại F, tạo với đoạn thẳng MB 1 góc = 90 độ.
Mình ghép câu b vào câu a luôn nhé bạn !!
a) Xét ΔAMB và ΔCMD có
AM=CM( do M là trung điểm của AC)
Góc AMB= góc CMD(đối đỉnh)
BM=DM
Suy ra : ΔAMB=ΔCMD(c.g.c)
\(\Rightarrow\widehat{BAM}=\widehat{DCM}=90^0\)
=> CD//AB
b ) Xét ΔANE và ΔBNC có
AN=NB( do N là trung điểm của AB)
Góc ANE= góc BNC( đối đỉnh)
NC=NE
=> ΔANE=ΔBNC(c-g-c)
=> AE=BC và góc AEN= góc BCN
=> EA//BC
Chứng minh tương tự ta có AD=BC và AD//BC
=> A;E;D thẳng hàng
Mà AE=AD
=> A là trung điểm của ED
a: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
=>ΔABM=ΔACM
=>MB=MC
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB//CD
Tự vẽ hình
a,AD ĐL py-ta-go vào \(\Delta\)vuông ABC có
\(BC^2=AB^2+AC^2\)
\(x^2=9^2+12^2\)
\(x^2=81+144\)
\(x^2=225\)
\(x=\sqrt{225}=15\)
b,Xét \(\Delta BAN\)và \(\Delta CDN\)có:
BN=DN
\(\widehat{BNA}=\widehat{DNC}\)
NA=NC
\(\Rightarrow\Delta BNA=\Delta CDN\left(c.g.c\right)\)
c,Vì \(\Delta BNA=\Delta CND\left(cmt\right)\)
\(\Rightarrow\widehat{BAN}=\widehat{DCN}\)(2 cạnh t.ư)
Mà 2 góc này ở VTSLT
\(\Rightarrow CD//AB\)