Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong t/g ABC có :
\(AB^2+BC^2=6^2+8^2=36+64=100\) (1)
\(AC^2=10^2=100\) (2)
từ (1) và (2) => \(AC^2=AB^2+BC^2\)
=> t/g ABC vuông tại B ( đ/lí pytago đảo )
Vậy ....
Ta Có : NB=AB-AN ( N thuộc AB )
NB=6-4=2 (cm)
Xét t/g NBC có : góc NBC = 90* ( t/G ABC cân tại B )
=> NC^2=NB^2+BC^2 (pytago )
NC^2=68 => NC = \(\sqrt{68}\) (cm) Vì NC lớn hơn 0
VẬY ....
a) Ta có: \(6^2 +8^2=36+64=100\)
\(10^2=100\)
\(\Rightarrow\)\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(\Delta ABC\)vuông tại \(A\)
b) Áp dụng định lý Pytago vào tam giác vuông \(ABH\)ta có:
\(AH^2=AB^2-BH^2\)
\(\Leftrightarrow\)\(AH^2=8^2-6,4^2=23,04\)
\(\Leftrightarrow\)\(AH=\sqrt{23,04}=4,8\)
Vậy....
a) Xét ΔABC có AB=BC>AC(6cm=6cm>4cm)
mà góc đối diện với cạnh AB là góc ACB
và góc đối diện với cạnh BC là góc BAC
và góc đối diện với cạnh AC là góc ABC
nên \(\widehat{ACB}=\widehat{BAC}>\widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
b) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Xét ΔABC có AB<BC<AC(6cm<8cm<10cm)
mà góc đối diện với cạnh AB là góc ACB
và góc đối diện với cạnh BC là góc BAC
và góc đối diện với cạnh AC là góc ABC
nên \(\widehat{ACB}< \widehat{BAC}< \widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
1) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
2) Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: BN=6-4=2(cm)
Xét ΔCBN vuông tại B có
\(CN^2=BN^2+BC^2\)
hay \(CN=2\sqrt{17}\left(cm\right)\)
a, Ta có:
\(AB^2+BC^2=6^2+8^2=36+64=100\left(cm\right)\)
\(AC^2=10^2=100\left(cm\right)\)
\(\Rightarrow AB^2+BC^2=AC^2\)
\(\Rightarrow\Delta ABC\) vuông tại B (định lý Pi-ta-go đảo)
b, Ta có: \(BN=AB-AN=6-4=2\left(cm\right)\)
Xét ΔCBN vuông tại B có:
\(NB^2+BC^2=CN^2\\ \Rightarrow CN=\sqrt{NB^2+BC^2}\\ \Rightarrow CN=\sqrt{2^2+8^2}\\ \Rightarrow CN=2\sqrt{17}\left(cm\right)\)