Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có
MN//AB
nên \(\dfrac{CM}{CB}=\dfrac{MN}{AB}\)
\(\Leftrightarrow MN=6\cdot\dfrac{1}{2}=3\left(cm\right)\)
b: Vì M đối xứng với E qua AC
nên AC là đường trung trực của ME
mà AC cắt ME tại N
nên N là trung điểm của ME
Xét tứ giác AMCE có
N là trung điểm của đường chéo ME
N là trung điểm của đường chéo AC
Do đó: AMCE là hình bình hành
1: AM=5cm
2: Xét tứ giác AMCE có
D là trung điểm của AC
D là trung điểm của ME
Do đó: AMCE là hình bình hành
mà MA=MC
nên AMCE là hình thoi
3 Xét tứ giác ABME có
ME//AB
ME=AB
Do đó: ABME là hình bình hành
1. Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\) (Định lý Pytago).
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10\left(cm\right).\)
Xét tam giác ABC vuông tại A: AM là trung tuyến (gt).
\(\Rightarrow\) \(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right).\)
2. M là trung điểm của BC (AM là trung tuyến của tam giác ABC).
\(\Rightarrow\) \(MC=MB.\)
Mà \(AM=\dfrac{1}{2}BC\left(cmt\right).\)
\(\Rightarrow\) \(MC=MB=AM=\dfrac{1}{2}BC.\)
Xét tứ giác AMCE:
+ D là trung điểm AC (gt).
+ D là trung điểm ME (E là điểm đối xứng với M qua D).
\(\Rightarrow\) Tứ giác AMCE là hình bình hành (dhnb).
Mà \(AM=MC\) (cmt).
\(\Rightarrow\) Tứ giác AMCE là hình thoi (dhnb).
3. Tứ giác AMCE là hình thoi (cmt). \(\Rightarrow\) \(AE=MC\) và \(AE\) // \(MC\) (Tính chất hình thoi).
Mà \(MB=MC\left(cmt\right).\)
\(\Rightarrow\) \(AE=MB.\)
Xét tứ giác AEMB có:
+ \(AE=MB\left(cmt\right).\)
+ \(AE\) // \(MB\left(cmt\right).\)
\(\Rightarrow\) Tứ giác ABME là hình bình hành (dhnb).
a: Xét tứ giác AHCE có
D là trung điểm chung của aC và HE
=>AHCE là hình bình hành
Hình bình hành AHCE có \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b:Ta có: AHCE là hình bình hành
=>AE//CH và AE=CH
=>AE//IH
Xét tứ giác AEHI có
AE//HI
AI//EH
Do đó: AEHI là hình bình hành
c: Ta có: AEHI là hình bình hành
=>AE=HI
mà AE=HC
nên HI=HC
=>H là trung điểm của CI
Xét tứ giác ACKI có
H là trung điểm chung của AK và CI
=>ACKI là hình bình hành
Hình bình hành ACKI có AK\(\perp\)CI
nên ACKI là hình thoi
a: Xét ΔABC có
M là trung điểm của BC
MN//AB
Do đó: N là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AB và \(MN=\dfrac{AB}{2}=\dfrac{6}{2}=3\left(cm\right)\)
b: Vì M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME
mà AC cắt ME tại N
nên N là trung điểm của ME
Xét tứ giác AMCE có
N là trung điểm của đường chéo ME
N là trung điểm của đường chéo AC
Do đó: AMCE là hình bình hành