K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Bạn tự vẽ hình nhaleu

a.

Xét tam giác MBE và tam giác MCA có:

MB = CM (AM là trung tuyến của tam giác ABC => M là trung điểm của BC)

BME = CMA (2 góc đối đỉnh)

AM = EM (gt)

=> Tam giác MBE = Tam giác MCA (c.g.c)

=> BE = CA (2 cạnh tương ứng)

=> MEB = MAC (2 góc tương ứng)

mà 2 góc này ở vị trsi so le trong

=> BE // AC

b.

BE // AC (theo câu a)

=> AFD = BED (2 góc so le trong)

Xét tam giác DFA và tam giác DEB có:

AFD = BED (chứng minh trên)

DF = DE (gt)

FDA = EDB (2 góc đối đỉnh)

=> Tam giác DFA = Tam giác DEB (g.c.g)

=> FA = EB (2 cạnh tương ứng)

mà EB = AC (theo câu a)

=> FA = AC

=> A là trung điểm của FC

c.

Tam giác ABC có:

AB < AC (gt)

mà AC = EB (theo câu a)

=> AB < EB

=> BEM < BAM (quan hệ giữa góc và cạnh đối diện trong tam giác)

mà BEM = CAM (tam giác MBE = tam giác MCA)

=> CAM < BAM

Chúc bạn học tốtok

6 tháng 5 2016

Phương An giúp mình làm bài hình còn lai được không?

đề nè

cho góc nhọn xOy; trên tia Ox lấy A(A#O); trên tia Oy lấy điểm B (B # O)sao cho OA = OB; kẻ ACvuông góc với OY (CE Oy) ; BD vuông góc Ox ( D E Ox); I là giao diểm của AC và BD
a. chứng minh tam giác AOC= tam giác BOD
b. So sánh IC và IA
c. Chứng minh tam giác AIB cân         
d. Chứng minh góc IAB=M góc 1\2 góc AOB     

17 tháng 5 2019

đề bài phần a bị sai nhé bn , phải là BE // AC mới đúng

a ) Xét tam giác AMC và tam giác EMB có :

MA = ME ( gt )

\(\widehat{EMB}=\widehat{AMC}\) ( hai góc đối đỉnh )

MB = MC ( do AM là đường trung tuyến )

nên tam giác AMC = tam giác EMB ( c.g.c )

=> \(\widehat{CAM}=\widehat{MEB}\)

Mà hai góc này ở vị trí so le trong => BE//AC

17 tháng 5 2019

um câu a mk chép sai đề 

BE // AC nha 

19 tháng 12 2018

a) Xét \(\Delta AMC\)và \(\Delta EMB\)

+ AM = BM(gt)

+ MA = ME (gt)

+ Góc AMC = góc EMD (đối đỉnh)

Vậy hai tam giác trên bằng nhau theo trường hợp (c-g-c)

Ta có \(\widehat{EBM}=\widehat{ACM}\)(hai góc tương ứng)

Mà hai góc này nằm ở vị trí so le trong nên AC//BE

BE = AC (hai cạnh tương ứng)

b) Xét \(\Delta ADF\)và \(\Delta BDE\)

+ FD = DE(gt)

+ AD = BD (gt)

+ Góc ADF bằng góc BDE (đối đỉnh)

Vậy hai tam giác trên bằng nhau theo TH c.g.c

Ta suy ra được AF = BE

Và góc EBD = góc DAF (hai góc tương ứng)

Mà hai góc này nằm ở vị trí so le trong nên AF//BE

Lại có AF và AC cùng song song với BE nên A,F,C thẳng hàng(1)

BE = AC = AF (cmt) (2)

Từ (1) và (2) ta có A là trung điểm CF

22 tháng 12 2018

Thank you 

a: Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: BE//AC và BE=AC

b: Xét tứ giác AFBE có

D là trung điểm của AB

D là trug điểm của FE

Do đó: AFBE là hình bình hành

Suy ra: AF//BE và AF=BE

=>AC//AF và AC=AF

=>A là trung điểm của CF

c: Ta có: góc BAM=góc AEC

mà góc AEC>góc CAM

nên góc BAM>góc CAM

18 tháng 3 2020

Câu hỏi này mà là linh tinh hả bạn( è)

14 tháng 2 2022

a) Xét tam giác ABE vuông tại E và tam giác ACF vuông tại F có:

\(\hept{\begin{cases}BAC+ABE=90\\BAC+ACF=90\end{cases}}\)  => ABE=ACF

 => 180-ABE=180-ACF    =>ABG=HCA

Xét tam giác AGB và tam giác HAC có:

AB=HC (gt)

ABG=HCA (CMT)

GB=AC (gt)

=> Tam giác AGB= Tam giác HAC (c.g.c) (ĐPCM)

=>AG=HA (hai góc tương ứng )  => Tam giác AGH cân tại A (1)

=> GAB=AHC (hai góc tương ứng)

Xét tam giác AFH vuông tại F có :

FAH+AHC=90 (định lí tổng 3 goác 1 tam giác )

=> FAH+GAB=90 (vì GAB=AHC cmt)

=>GAH=90  (2)  Từ (1) và (2) suy ra: AGH vuông cân tại A (ĐPCM)

b) 1)Theo a, có: Tam giác AGB= Tam giác HAC

=> AG=HA ( hai cạnh tương ứng)

=> Tam giác AGH cân tại A

Mà M là trung điểm của GH   => AM là trung tuyến đồng thời là đường cao 

=> AM vuông góc với GH 

=> AMN=90    =>Tam giác MIN vuông tại M

=>MIN+IMN+MNI=180 (định lí tổng ba góc 1 tam giác)

=>MNI=180-90-MIN=90-MIN (1)

Gọi giao điểm của AO và BC là K, giao điểm của AM và BC là I

Vì O là giao điểm hai đường vuông góc BE và CF của tam giác ABC nên AO là đường vuông góc thứ ba của tam giác này

=> AKN=90   => Tam giác AKI vuông tại K

=> IAK+AKI+AIK=180

=>IAK=180-90-AIK=90-AIK (2)

Từ (1) và (2) có: MNI=90-MIN, IAK=90-AIK

Mà MIN và AIK đối đỉnh => MNI=IAK   =>BNG=OAM (ĐPCM)

2) Ta có AB < AC mà AC = BG                             

=> AB < BG                                                           

=>AGB < GAB mà AGB = HAC (câu a)                     

=>HAC < GAB (1)

Tam giác AGH cân tại A, đường trung tuyến AM       

=> GAM = HAM (2).

Từ (1) và (2) => BAM = GAM - GAB < HAM - HAC = MAC (ĐPCM)