Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C B M F N A I E O K T
b, kẻ AO // BC
góc OAK so le trong KFB
=> góc OAK = góc KFB (tc)
xét tam giác AOK và tam giác BMK có : AK = KM (do ...)
góc AKO = góc MBK (đối đỉnh)
=> tam giác AOK = tam giác BMK (g-c-g)=
=> AO = MB (đn)
có AO // BC mà góc EOA đồng vị EMC
=> góc EOA = góc EMC (tc) (1)
gọi EF cắt tia phân giác của góc BCA tại T
EF _|_ CT (gt)
=> tam giác ETC vuông tại T và tam giác CTF vuông tại T
=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM
có có TCM = góc ECT do CT là phân giác của góc ACB (gt)
=> góc CET = góc TMC và (1)
=> góc AEO = góc AOE
=> tam giác AEO cân tại A (tc)
=> AE = AO mà AO = BM
=> AE = BM
a, MB = MN (gt)
M nằm giữa N và B
=> M là trung điểm của NP (đn)
NI // AB (gt); xét tam giác ANB
=> I là trung điểm của AN (đl)
b,
A B C E N I D M O 1 2 2 1 2 3 1 3 1
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
a, Ta có:MN\(//\)AB
\(\Rightarrow\)\(\widehat{ABM}=\widehat{BMN}\left(slt\right)\) (1)
mà Bx là tia phân giác của \(\widehat{ABC}\)\(\Rightarrow\)\(\widehat{ABM}=\widehat{xBC}\)
Kết hợp với (1) ta được \(\widehat{BNM}=\widehat{xBC}\)(đfcm)
b,Ta có:
MN\(//\)AB
\(\Rightarrow\widehat{ABC}=\widehat{MNC}\left(đv\right)\) (2)
Ta lại có: Bx là tia phân giác của \(\widehat{ABC}\)mà Bx\(//\)Ny
Kết hợp với (2) ta được Ny là tia phân giác của\(\widehat{MNC}\)
Vậy..............
a) vì BA // DE => góc BAD = ADE ( so le trong )
mà BAD=CAD (gt) => DAC = ADE
=> tam giác EAD cân tại E
b) BA //DE => BK//DE
KE//BC =>KE//BD
=> KEDB là hình bình hành
=>BK = DE ( 2 cạnh đối )
mà DE = AE ( t/g AED cân )
=> BK=AE