Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
k vẽ hình nx nha!
a/ Xét t/g ABM và t/g CDM có:
MB = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
AM = CM (gt)
=> t/g ABM = t/g CDM(c.g.c)(đpcm)
b/ Vì t/g ABM = t/g CDM (ý a)
=> \(\widehat{BAM}=\widehat{DCM}=90^o\) (2 góc tương ứng)
=> AC \(\perp\) CD (đpcm)
c/ Ta có: \(\widehat{BAM}=\widehat{DCM}\) (đã cm)
mà 2 góc này lại ở vị trí so le trong nên:
=> AB // CD(đpcm)
a) Xét t/g AME và t/g DMB có:
AM=DM (gt)
AME=DMB ( đối đỉnh)
ME=MB (gt)
Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)
b) t/g AME = t/g DMB (câu a)
=> AE=BD (2 cạnh tương ứng) (1)
AEM=DBM (2 góc tương ứng)
Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)
(1) và (2) là đpcm
c) Xét t/g AKE và t/g CKD có:
AEK=CDK (so le trong)
AE=CD ( cùng = BD)
EAK=DCK (so le trong)
Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)
d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)
=> AF = DC (2 cạnh tương ứng)
AFM=DCM (2 góc tương ứng)
Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC
Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)
Mà AF=DC=BD=AE (4)
Từ (3) và (4) => A là trung điểm của EF (đpcm)
a: Xét ΔMBA và ΔMDC có
MB=MD
\(\widehat{BMA}=\widehat{DMC}\)
MA=MC
Do đó: ΔMBA=ΔMDC
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
Suy ra: AB//CD
c: Ta có ΔABC vuông tại B
mà BM là đường trung tuyến
nên AC=2BM