Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M E
a) CMR AC // BE
xét tam giacs AMC và tam giác EMB
có AM = ME (gt)
BM = MC (M trung điểm BC)
\(\widehat{AMC}=\widehat{EMB}\left(dd\right)\)
=> tam giác AMC = tam giác EMB (cgc)
=> \(\widehat{MBE}=\widehat{MCB}\)mà chúng ở vị trí so le trong => AC//BE
b) bạn tự thêm điểm I và K vào hình vẽ nhé, mình lười :))
ta có I thuộc AC, K thuộc BE nên
IC = AC - AI và BK = BE - KE
mà AC = BE (cmt), AI = KE (gt)
=> IC = BK
xét tam giác IMC và tam giác KMB
có: BK = IC (cmt)
BM = MC (cmt)
góc MBK = góc ICM (AC//BE)
=> tam giác IMC = tam giác KMB (cgc)
=> góc IMC = góc KMB
khi đó góc IMK = 180 độ
I, M, K thẳng hàng
a) xét tam giác EBM và tam giác ACM có :
BM=CM (gt)
góc AMC=gócBME (2 góc đối đỉnh)
ME=MA (gt)
=> tam giác EBM = tam giác ACM (c-g-c)
=> góc E = góc A (2 góc tương ứng)
mà chúng nằm ở vị chí so le trong
=> AC // BE (đpcm)
b)xét tam giác tam giác AIM và tam giác EKM có :
MA=ME (GT)
góc A=góc E (cmt)
AI=EK (GT)
=> tam giác AIM=tam giác EKM (c-g-c)
=> góc AMI = góc KME (2 cạnh tương ứng)
Mà góc AMI+ góc IME =180
góc KME+ góc IME= 180
=>IMK=180
=> I,M,K thẳng hàng
Bài 1:
a: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMEB
=>AC=EB
Ta có: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
b: Xét ΔIAM và ΔKEM có
IA=KE
\(\widehat{IAM}=\widehat{KEM}\)
AM=EM
Do đó: ΔIAM=ΔKEM
=>\(\widehat{IMA}=\widehat{KME}\)
=>\(\widehat{IMA}+\widehat{AMK}=180^0\)
=>I,M,K thẳng hàng
Bài 2:
2xy-x-y=12
=>x(2y-1)-y+1/2=12,5
=>\(2x\left(y-\dfrac{1}{2}\right)-\left(y-\dfrac{1}{2}\right)=12,5\)
=>\(2x\left(2y-1\right)-\left(2y-1\right)=25\)
=>\(\left(2x-1\right)\left(2y-1\right)=25\)
=>\(\left(2x-1;2y-1\right)\in\left\{\left(1;25\right);\left(25;1\right);\left(-1;-25\right);\left(-25;-1\right);\left(5;5\right);\left(-5;-5\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;13\right);\left(13;2\right);\left(0;-12\right);\left(-12;0\right);\left(3;3\right);\left(-2;-2\right)\right\}\)
Do AC=BE(gt)
AMC=BME(đối đỉnh)
BM=MC(M là trung điểm BC)
Suy ra tam giác AMC=tam giác BME(c-g-c)
ACM=MBE và hai góc này ở vị trí so le trong nên AC // BE
a/ Xét tam giác AMC và tam giác EMB có
AM=ME(gt)
góc AMC=góc EMB(đối đỉnh)
BM=MC( M là trung điểm của BC)
Vậy tam giác AMC = tam giác EMB(c-g-c)
M A B C E I K H 1 2
a, Xét hai tam giác AMC và tam giác BME, ta có:
AM=ME (giả thiết)
góc BME= góc AMC (2 góc đối đỉnh)
BM=MC (M là trung điểm của BC)
Suy ra: tam giác AMC= tam giác BME (c.g.c)
=> AC=BE (hai cạnh tương ứng) (ĐPCM)
=>góc MAC= góc MEB (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên: AC//BE (ĐPCM)
b, Xét tam giác AMI và tam giác EMK, ta có:
KE=AI (giả thiết)
góc CAM= góc EMK(chứng minh trên)
AM=Me ( giả thiết)
Suy ra: tam giác AMI= tam giác EMK(c.g.c)
=> góc AMI= góc EMK (2 góc tương ứng)
Mà góc AMI+ góc IME= 180 độ (2 góc kề bù)
Do đó: góc IME+ góc EMK= 180 độ
Hay 3 điểm I,M,K thẳng hàng (ĐPCM)
c, Vì góc HME là góc ngoài của tam giác BME nên:
HME= MBE+ MEB
= 50 độ+ 25 độ
= 75 độ
Xét tam giác vuông có H1= 90 độ, ta có
HME+HEM= 90 độ
=> Hem= 90 độ- HME= 90 độ- 75 độ= 15 độ
Theo định lí tổng 3 góc trong tam giác BME, ta có:
BME+ MBE+ BEM= 180 độ
=> BME= 180 độ- MBE-BEM= 180 đọ- 50 đọ- 25 độ= 105 độ
Vậy HEM=15 độ
BME= 105 độ
A B C M E H K I
a/
-Xét tam giác ACM và tam giác EBM, có:
CM=MB (gt)
góc AMC = góc EMB ( đối đỉnh )
AM=ME ( gt)
=> tam giác ACM và tam giác EBM bằng nhau ( c.g.c )
=> AC=EB
- Theo chứng minh trên
=> góc ACM = góc MBE ( hai góc so le trong )
=> AC song song BE.
b) ( câu này ko bik nhé)
c)
ta có góc BME = 180 -50-25
= 105 độ.
góc HEM = góc MHE - góc HME
=90- 105 (??????)
Cậu xem lại đề nhé.