Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ADE có góc ADE=(180 độ-góc A)/2
tương tự góc B=(180 độ-góc A)/2
=>góc B=góc ADE
mà chúng ở vị trí đồng vị nên DE//BC
tick nhan bạn
A B C P N I K H M
\(S_{AMC}=\frac{1}{3}S_{ABC}\) ( Vì hai tam giác có chung chiều cao hạ từ đỉnh \(C\)xuống \(AB\) và \(AM=\frac{1}{3}AB\))
\(S_{BNC}=\frac{1}{3}S_{ABC}\) ( Vì hai tam giác có chung chiều cao hạ từ đỉnh \(B\)xuống \(AC\) và \(NC=\frac{1}{3}AC\))
\(S_{ABP}=\frac{1}{3}S_{ABC}\) ( Vì hai tam giác có chung chiều cao hạ từ đỉnh \(A\)xuống \(BC\)và \(BP=\frac{1}{3}BC\))
Suy ra : \(S_{AMC}+S_{BNC}+S_{BKP}=S_{ABC}\)
Tuy nhiên trên hình vẽ tổng diện tích 3 tam giác chưa phủ kín \(S_{ABC}\) , còn phần trống là \(S_{IHK}\).
Mà trong tổng diện tích 3 tam giác trên có : \(S_{AMH}\) ; \(S_{BKP}\); \(S_{INC}\) bị tính 2 lần .
Vậy : \(S_{IHK=}S_{AMH}+S_{BKP}+S_{INC}\)( đpcm )