K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

Bạn xem lại đề bài.

Tam giác ABC vuông tại A. => AB<BC

Vì thế đề bài AB=BC là sai

17 tháng 7 2018

A B C H

a)  Áp dụng định lý Pytago ta có:

            \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(BC^2=5^2+12^2=169\)

\(\Leftrightarrow\)\(BC=13\)

b)  Áp dụng hệ thức lượng ta có:

      \(AB.AC=BC.AH\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=4\frac{8}{13}\)

        \(AB^2=BH.BC\)

\(\Rightarrow\)\(BH=\frac{AB^2}{BC}=\frac{25}{13}\)

c)    \(sinB=\frac{AC}{BC}=\frac{12}{13}\)             \(tanB=\frac{AC}{AB}=\frac{12}{5}\)

      \(cosB=\frac{AB}{BC}=\frac{5}{13}\)               \(cotB=\frac{AB}{AC}=\frac{5}{12}\)

13 tháng 10 2023

a,c: ΔAHC vuông tại H 

=>\(AH^2+HC^2=AC^2\)

=>\(HC=\sqrt{16^2-9^2}=5\sqrt{7}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AC^2=CH\cdot CB\)

=>\(CB=\dfrac{16^2}{5\sqrt{7}}=\dfrac{256}{5\sqrt{7}}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(sinB=\dfrac{AC}{BC}=16:\dfrac{256}{5\sqrt{7}}=\dfrac{5\sqrt{7}}{16}\)

=>\(\widehat{B}\simeq56^0\)

=>\(\widehat{C}=90^0-56^0=34^0\)

b: \(sinB=\dfrac{5\sqrt{7}}{16}\)

=>\(cosB=\sqrt{1-sin^2B}=\dfrac{9}{16}\)

\(tanB=\dfrac{5\sqrt{7}}{16}:\dfrac{9}{16}=\dfrac{5\sqrt{7}}{9}\)

\(cotB=1:\dfrac{5\sqrt{7}}{9}=\dfrac{9}{5\sqrt{7}}\)

13 tháng 10 2023

\(sinC=\dfrac{AH}{AC}=\dfrac{9}{16}\)

\(\Rightarrow\widehat{C}\simeq34,2\)

\(\Rightarrow\widehat{B}=180^o-90^o-34,2^o=55,8^o\)

\(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}\\cosB=\dfrac{AB}{BC}\\tanB=\dfrac{AC}{AB}\\cotB=\dfrac{AB}{AC}\end{matrix}\right.\)

30 tháng 9 2021

bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=152+202=625
  BC=25cm
* AH.BC=AB.AC
  AH.25=15.20
  AH.25=300
  AH=12cm

30 tháng 9 2021

tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
 AC2=252-152=400
 AC=20cm

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

30 tháng 9 2021

tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=92+122=225
  BC=15cm
* AH.BC=AB.AC
  AH.15=9.12
AH.15=108
  AH=7,2cm
\(sinB=\dfrac{4}{5};cosB=\dfrac{3}{5};tanB=\dfrac{4}{3};cotanb=\dfrac{3}{4}\)
\(=>sinC=\dfrac{3}{5};cosC=\dfrac{4}{5};tanC=\dfrac{3}{4};cotanC=\dfrac{4}{3}\)

30 tháng 9 2021

b)
tam giác ABC vuông tại A có
AC.AK=AH2
HB.HC=AH2
=>AC.AK=HB.HC
\(=>\dfrac{AC}{HC}=\dfrac{HB}{AK}\)